Abstract
Diabetes is a life-threatening disease that affects various human body organs, including eye retina. Advanced Diabetic Eye disease (DED) leads to permanent vision loss, thus an early detection of DED symptoms is essential to prevent disease escalation and timely treatment. Up till now, research challenges in early DED detection can be summarised as follows: Firstly, changes in the eye anatomy during its early stage are frequently untraceable by human eye due to subtle nature of the features, and Secondly, large volume of fundus images puts a significant strain on limited specialist resources, rendering manual analysis practically infeasible. Thus, Deep Learning-based methods have been practiced to facilitate early DED detection and address the issues currently faced. Despite promising, highly accurate detection of early anatomical changes in the eye using Deep Learning remains a challenge in wide scale practical application. Consequently, in this research we aim to address the main three research gaps and propose the framework for early automated DED detection system on fundus images through Deep Learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carson Lam, D.Y., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. AMIA Summits Transl. Sci. Proc. 2018, 147 (2018)
Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018)
Gardner, G.G., Keating, D., Williamson, T.H., Elliott, A.T.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br. J. Ophthalmol. 80(11), 940–944 (1996)
Mateen, M., Wen, J., Song, S., Huang, Z.: Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11(1), 1 (2019)
Sankar, M., Batri, K., Parvathi, R.: Earliest diabetic retinopathy classification using deep convolution neural networks. pdf. Int. J. Adv. Eng. Technol. (2016)
Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)
Orlando, J.I., Prokofyeva, E., del Fresno, M., Blaschko, M.B.: Convolutional neural network transfer for automated glaucoma identification. In: 12th International Symposium on Medical Information Processing and Analysis, January 26, vol. 10160, p. 101600U). International Society for Optics and Photonics (2017)
Gelman, R.: Evaluation of transfer learning for classification of: (1) diabetic retinopathy by digital fundus photography and (2) diabetic macular edema, choroidal neovascularization and drusen by optical coherence tomography. arXiv: 1902.04151. 26 January 2019
Pratap, T., Kokil, P.: Computer-aided diagnosis of cataract using deep transfer learning. Biomed. Signal Process. Control. 53, 101533 (2019)
Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)
Vahadane, A., Joshi, A., Madan, K., Dastidar, T.R.: Detection of diabetic macular edema in optical coherence tomography scans using patch based deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), April 4, pp. 1427–1430. IEEE (2018)
Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)
Otálora, S., Perdomo, O., González, F., Müller, H.: Training deep convolutional neural networks with active learning for exudate classification in eye fundus images. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 146–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_16
Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017)
Chai, Y., Liu, H., Xu, J.: Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowl.-Based Syst. 161, 147–156 (2018)
Li, F., Wang, Z., Qu, G., Qiao, Y., Zhang, X.: Visual field based automatic diagnosis of glaucoma using deep convolutional neural network. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 285–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_34
Raghavendra, U., Fujita, H., Bhandary, S.V., Gudigar, A., Tan, J.H., Acharya, U.R.: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441, 41–49 (2018)
Subramani, S., Michalska, S., Wang, H., Du, J., Zhang, Y., Shakeel, H.: Deep learning for multi-class identification from domestic violence online posts. IEEE Access 7, 46210–46224 (2019)
Peng, M., et al.: Neural sparse topical coding. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1, Long Papers, pp. 2332–2340 (July 2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sarki, R., Ahmed, K., Wang, H., Michalska, S., Zhang, Y. (2020). Early Detection of Diabetic Eye Disease from Fundus Images with Deep Learning. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds) Databases Theory and Applications. ADC 2020. Lecture Notes in Computer Science(), vol 12008. Springer, Cham. https://doi.org/10.1007/978-3-030-39469-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-39469-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39468-4
Online ISBN: 978-3-030-39469-1
eBook Packages: Computer ScienceComputer Science (R0)