Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Use of Analogy to Simplify the Mathematical Description of the Didactical Process

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2019)

Abstract

The article presents a new method of modelling the didactical process using a developed educational network and the microsystems simulator. The didactical process can be represented in the intuitive form of a network of connected elements in a similar way to the electrical circuits. The network represents the differential equations describing a dynamic system which models the information flows as well as learning and forgetting phenomena. The solutions of the equations are more adequate than the direct formulas used in modelling i.e. the learning and forgetting curves known from the literature. The network variables and their meaning are relative to generalized variables defined in the generalized environment. This enables using any of the microsystems simulators and gives access to many advanced simulation and optimization algorithms. The use of the microsystems simulator enables simulation of the didactical process in time and prediction of effects also after its completion in the long-term. Based on the simulation, you can design a teaching process, as well as draw conclusions about the process itself and the composition of groups. Selected examples with a brief description have been included. The issues discussed in the work may be of interest to those involved in the analysis and mathematical description of the didactic process. The paper can be interesting for those who deal with modelling of the systems which incorporates the learning and forgetting process, in particular, in production processes or learning platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002), p. c1–626, January 2009. https://doi.org/10.1109/IEEESTD.2009.4772740

  2. Anki (2017). https://apps.ankiweb.net

  3. Bloom’s taxonomy (2017). http://www.aritzhaupt.com/eBook_ADDIE/design.html#Introduction_to_Design

  4. SuperMemo (2017). https://www.supermemo.com

  5. xAPI (2018). http://www.xapi.com

  6. Mechanical-electrical analogies (2019). https://en.wikipedia.org/wiki/Mechanicals-electrical_analogies

  7. Anzanello, M., Fogliatto, F.: Learning curve models and applications: literature review and research directions. Int. J. Ind. Ergon. 41(5), 573–583 (2011). https://doi.org/10.1016/j.ergon.2011.05.001. http://www.sciencedirect.com/science/article/pii/S016981411100062X

    Article  Google Scholar 

  8. Badiru, A.: Computational survey of univariate and bivariate learning curve models. IEEE Trans. Eng. Manage. 39, 176–188 (1992)

    Article  Google Scholar 

  9. Baškarada, S., Koronios, A.: Data, Information, Knowledge, Wisdom (DIKW): a semiotic theoretical and empirical exploration of the hierarchy and its quality dimension. Australas. J. Inf. Syst. 18(1) (2013). http://journal.acs.org.au/index.php/ajis/article/view/748

  10. Birjali, M., Beni-Hssane, A., Erritali, M.: A novel adaptive e-learning model based on big data by using competence-based knowledge and social learner activities. Appl. Soft Comput. 69, 14–32 (2018). https://doi.org/10.1016/j.asoc.2018.04.030

    Article  Google Scholar 

  11. Bloom, B.: Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I: Cognitive Domain. Longmans, Green, New York (1956)

    Google Scholar 

  12. Busch-Vishniac, I.J.: Electromechanical Sensors and Actuators. Mechanical Engineering Series. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1434-2. https://books.google.pl/books?id=au4H_cUgWVEC

    Book  Google Scholar 

  13. Care, C.: Technology for Modelling: Electrical Analogies, Engineering Practice, and the Development of Analogue Computing. History of Computing. Springer, London (2010). https://doi.org/10.1007/978-1-84882-948-0. https://books.google.pl/books?id=bkbBZcR7DG4C

    Book  Google Scholar 

  14. Choi, B.C., Pak, A.W.: Multidisciplinarity, interdisciplinarity, and transdisciplinarity in health research, services, education and policy: 3. Discipline, inter-discipline distance, and selection of discipline. Clin. Invest. Med. 31(1) (2008). https://doi.org/10.25011/cim.v31i1.3140

    Article  Google Scholar 

  15. van Duyn, D.: Modeling and simulation of solid-state transducers: the thermal and electrical energy domain. Sens. Actuators A41, 268–274 (1994)

    Article  Google Scholar 

  16. Ebbinghaus, H.: Memory: a contribution to experimental psychology (1913). Original Work Published in 1885. https://web.archive.org/web/20051218083239/http://psy.ed.asu.edu:80/classics/Ebbinghaus/index.htm

    Book  Google Scholar 

  17. El-Bakry, H.: Handling big data in e-learning. Int. J. Adv. Res. Comput. Sci. Technol. 3, 47–51 (2015)

    Google Scholar 

  18. Essa, A.: A possible future for next generation adaptive learning systems. Smart Learn. Environ. 3(1), 16 (2016). https://doi.org/10.1186/s40561-016-0038-y

    Article  Google Scholar 

  19. Gear, C.W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circ. Theory 18(1), 89–95 (1971)

    Article  Google Scholar 

  20. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  21. Heller, O., Mack, W., Seitz, J.: Replikation der Ebbinghaus’schen Vergessenskurve mit der Ersparnis-methode: Das Behalten und Vergessen als Function der Zeit. Zeitschrift für Psychologie 199(1), 3–18 (1991)

    Google Scholar 

  22. Ho, C., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. CAS–22(6), 504–509 (1975)

    Google Scholar 

  23. Jaber, M. (ed.): Learning Curves. CRC Press, Boca Raton (2011). eBook - PDF 2016

    Google Scholar 

  24. Jaber, M., Saadany, A.: An economic production and manufacturing model with learning effects. Int. J. Prod. Econ. 131(1), 115–127 (2011)

    Article  Google Scholar 

  25. Kamhawi, E.: The three tiers architecture of knowledge flow and management activities. Inf. Organ. 20, 169–186 (2017). http://www.sciencedirect.com/science/article/pii/S1471772710000321

    Article  Google Scholar 

  26. Lolli, F., Balugani, E., Gamberini, R., Rimini, B., Rossi, V.: A human-machine learning curve for stochastic assembly line balancing problems. IFAC-PapersOnLine 51(11), 1186–1191 (2018). https://doi.org/10.1016/j.ifacol.2018.08.429. http://www.sciencedirect.com/science/article/pii/S2405896318315568. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018

    Article  Google Scholar 

  27. Mazur, J., Hastie, R.: Learning as accumulation: a re-examination of the learning curve. Psychol. Bull. 85, 1256–1274 (1978)

    Article  Google Scholar 

  28. McIntyre, E.: Cost-volume-profit analysis adjusted for learning. Manage. Sci. 24, 149–160 (1977)

    Article  Google Scholar 

  29. Murre, J., Dros, J.: Replication and analysis of Ebbinghaus’ forgetting curve. PLoS ONE 10(7), 1–23 (2015). https://doi.org/10.1371/journal.pone.0120644

    Article  Google Scholar 

  30. Murre, J., Meeter, M., Chessa, A.: Modeling amnesia: connectionist and mathematical approaches. In: Wenger, M., Schuster, C. (eds.) Statistical and Process Models for Neuroscience and Aging, pp. 119–162. Lawrence Erlbaum, Mahwah (2007)

    Google Scholar 

  31. Ogrodzki, J.: One-dimensional orthogonal search—a method for a segment approximation to acceptability regions. Int. J. Circ. Theory Appl. (1986). https://doi.org/10.1002/cta.4490140302

    Article  Google Scholar 

  32. Ogrodzki, J.: Circuit Simulation Methods and Algorithms. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  33. Panadero, M., Pardo, A., Panadero, J., Andreas, M.: A mathematical model for reusing student learning skills across didactical units. In: 32nd ASEE/IEEE Frontiers in Education Conference, November 2002

    Google Scholar 

  34. Plaskura, P.: Kierowana zdarzeniami symulacja systemów analogowych o opisie behawioralnym (Event-driven simulation of analog systems with behavioral description). Praca doktorska (Ph.D. dissertation), Politechnika Warszawska (Warsaw University of Technology), Warszawa (2001)

    Google Scholar 

  35. Plaskura, P.: Symulator mikrosystemów Dero v4. Metody i algorytmy obliczeniowe, modelowanie behawioralne, przykłady. (Microsystems simulator Dero v4. Computational methods and algorithms, behavioral modelling, examples.). AIVA (2013). http://epub.aiva.pl/?isbn=978-83-937245-1-2

  36. Plaskura, P.: Zaawansowane metody symulacji układów elektronicznych. Metody i algorytmy obliczeniowe. (Advanced methods of electronic circuit simulation. Computational methods and algorithms.). AIVA (2013). http://epub.aiva.pl/?isbn=978-83-937245-0-5

  37. Plaskura, P.: Quela - a platform for managing the didactical process. In: Stiepanienko, M., Grinowoji, M. (eds.) (Materials of the International Scientific and Practical Conference: Methodology of Teaching Natural Sciences in Secondary and High School (XXIII Karischinskiy Reading)), pp. 337–340, Poltava V.G. Korolenko National Pedagogical University, Poltava, May 2016

    Google Scholar 

  38. Plaskura, P.: Assessing the quality of the didactic process on the base of its monitoring with the use of ICT. (Pedag. Sci. Theory Hist. Innov. Technol.) 76(2), 185–196 (2018). https://doi.org/10.24139/2312-5993/2018.02/185-196

  39. Plaskura, P.: Dero 4 simulator as a didactical tool. ABID 23(1), 44–51 (2018). http://abid.cobrabid.pl

    Google Scholar 

  40. Plaskura, P.: The use of ICT in improving the effectiveness of the didactical process. (Pedag. Sci. Theory Hist. Innov. Technol.) (17), 152–159 (2018). http://dspace.pnpu.edu.ua/handle/123456789/9739

  41. Plaskura, P.: Wykorzystanie technologii informacyjnych do modelowania i monitorowania jakości procesu dydaktycznego (The use of information technology for modelling and monitoring the quality of the didactical process). Wydawnictwo Uniwersytetu Jana Kochanowskiego, Piotrków Trybunalski, December 2018

    Google Scholar 

  42. Plaskura, P.: Modelling of forgetting curves in educational e-environment. Inf. Technol. Learn. Tools 71(3), 1–11 (2019)

    Google Scholar 

  43. Plaskura, P.: Monitorowanie jakości procesu dydaktycznego z wykorzystaniem ICT (Monitoring the quality of the didactical process with the use of ICT). In: Leshchenko, M., Zamecka-Zalas, O., Kiełtyk-Zaborowska, I. (eds.) Globalne i regionalne konteksty w edukacji wczesnoszkolnej, pp. 151–164. Wydawnictwo Uniwersytetu Jana Kochanowskiego w Kielcach Filia w Piotrkowie Trybunalskim (2019)

    Google Scholar 

  44. Rao, K., Edelen-Smith, P., Wailehua, C.U.: Universal design for online courses: applying principles to pedagogy. Open Learn. J. Open Distance e-Learning 30(1), 35–52 (2015). https://doi.org/10.1080/02680513.2014.991300

    Article  Google Scholar 

  45. Rowley, J.: The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 33(2), 163–180 (2007). https://doi.org/10.1177/0165551506070706

    Article  Google Scholar 

  46. Rubin, D., Hinton, S., Wenzel, A.: The precise time course of retention. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1161–1176 (1999). https://doi.org/10.1037/0278-7393.25.5.1161

    Article  Google Scholar 

  47. Saleh, R., Jou, S.-J., Newton, A.: Mixed-Mode Simulation and Analog Multilevel Simulation. The Springer International Series in Engineering and Computer Science, vol. 279. Springer, New York (1994). https://doi.org/10.1007/978-1-4757-5854-2

    Book  MATH  Google Scholar 

  48. Senturia, S.: CAD challenges for microsensors, microactuators and microsystems. Proc. IEEE 86, 1611–1626 (1998)

    Article  Google Scholar 

  49. Senturia, S.: Simulation and design of microsystems: a 10-year perspective. Sens. Actuators A67, 1–7 (1998)

    Article  Google Scholar 

  50. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol. 12. Springer, New York (2002). https://doi.org/10.1007/978-0-387-21738-3

    Book  MATH  Google Scholar 

  51. Towill, D.: Forecasting learning curves. Int. J. Forecast. 6(1), 25–38 (1990)

    Article  Google Scholar 

  52. Whitaker, A.: An Introduction to the Tin Can API. The Training Business, June 2012

    Google Scholar 

  53. Wickelgren, W.: Single-trace fragility theory of memory dynamics. Mem. Cogn. 2, 775–780 (1974)

    Article  Google Scholar 

  54. Womer, N.: Learning curves, production rate and program costs. Manage. Sci. 25(4), 312–319 (1979)

    Article  Google Scholar 

  55. Woźniak, P., Gorzelańczyk, E.: Hypothetical molecular correlates of the two-component model of long-term memory. In: The 7th International Symposium of the Polish Network of Molecular and Cellular Biology UNESCO/PAS, June 1998

    Google Scholar 

  56. Woźniak, P., Gorzelańczyk, E., Murakowski, J.: Two components of long-term memory. Acta Neurobiol. Exp. 55, 301–305 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Plaskura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plaskura, P. (2020). The Use of Analogy to Simplify the Mathematical Description of the Didactical Process. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2019. Communications in Computer and Information Science, vol 1175. Springer, Cham. https://doi.org/10.1007/978-3-030-39459-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39459-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39458-5

  • Online ISBN: 978-3-030-39459-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics