Nothing Special   »   [go: up one dir, main page]

Skip to main content

Short-Term Electricity Price Forecasting: Deep ANN vs GAM

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2019)

Abstract

Examining the spot price series of electricity over the course of time, it is striking that the electricity price across the day takes a course that is determined by power consumption following a day and night rhythm. The daily course changes in its height and temporal extent in both, the course of the week, as well as with the course of the year. This study deals methodologically with this intra-day and seasonal behaviour. We compare the forecasting accuracy of Deep Artificial Neural Nets (ANN) of different architectures and Generalized Additive Models (GAM) and apply these models with European data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adebiyi, A.A., Adewumi, A.O., Ayo, C.K.: Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 1–7 (2014)

    MathSciNet  Google Scholar 

  2. Aggarwal, S.K., Saini, L.M., Kumar, A.: Electricity price forecasting in deregulated markets: a review and evaluation. Int. J. Electr. Power Energy Syst. 31(1), 13–22 (2019)

    Google Scholar 

  3. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267–281 (1973)

    Google Scholar 

  4. Barrow, D., Kourentzes, N.: The impact of special days in call arrivals forecasting: a neural network approach to modelling special days. Eur. J. Oper. Res. 264(3), 967–977 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  6. Bierbrauer, M., Menn, C., Rachev, S.T., Trück, S.: Spot and derivative pricing in the EEX power market. J. Bank. Financ. 31(11), 3462–3485 (2007)

    Google Scholar 

  7. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control (2. Printing). Holden-Day, San Francisco (1971)

    Google Scholar 

  8. Cerjan, M., Matijaš, M., Delimar, M.: Dynamic hybrid model for short-term electricity price forecasting. Energies 7(5), 3304–3318 (2014)

    Google Scholar 

  9. Conejo, A.J., Contreras, J., Espínola, R., Plazas, M.A.: Forecasting electricity prices for a day-ahead pool-based electric energy market. Int. J. Forecast. 21(3), 435–462 (2005)

    Google Scholar 

  10. Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 20(2), 1035–1042 (2005)

    Google Scholar 

  11. Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003)

    Google Scholar 

  12. Dudek, G.: Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. Int. J. Forecast. 32(3), 1057–1060 (2016)

    Google Scholar 

  13. Fan, S., Hyndman, R.J.: Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst. 27(1), 134–141 (2012)

    Google Scholar 

  14. Filho, J.C.R., de Affonso, C.M., de Oliviera, R.C.L.: Energy price prediction multi-step ahead using hybrid model in the Brazilian market. Electr. Power Syst. Res. 117, 115–122 (2014)

    Google Scholar 

  15. Gajowniczek, K., Ząbkowski, T.: Short term electricity forecasting using individual smart meter data. Procedia Comput. Sci. 35, 589–597 (2014)

    Google Scholar 

  16. Garcia, R.C., Contreras, J., van Akkeren, M., Garcia, J.B.C.: A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)

    Google Scholar 

  17. Geman, H., Roncoroni, A.: Understanding the fine structure of electricity prices. J. Bus. 79(3), 1225–1261 (2006)

    Google Scholar 

  18. Ghiassi, M., Saidane, H., Zimbra, D.K.: A dynamic artificial neural network model for forecasting time series events. Int. J. Forecast. 21(2), 341–362 (2005)

    Google Scholar 

  19. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Google Scholar 

  20. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    MathSciNet  Google Scholar 

  21. Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)

    Google Scholar 

  22. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  24. Hong, T.: Energy forecasting: past, present, and future. Foresight Int. J. Appl. Forecast. 32, 43–48 (2014)

    Google Scholar 

  25. Hope, E., Rud, L., Singh, B.: Electricity futures market. In: Lesourd, J.-B., Percebois, J., Valette, F. (eds.) Models for Energy Policy, pp. 238–249. Routledge, New York (1996)

    Google Scholar 

  26. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    MathSciNet  MATH  Google Scholar 

  27. Hu, Z., Yang, L., Wang, Z., Gan, D., Sun, W., Wang, K.: A game-theoretic model for electricity markets with tight capacity constraints. Int. J. Electr. Power Energy Syst. 30(3), 207–215 (2008)

    Google Scholar 

  28. Hyndman, R.J.: R Package “forecast”: Forecasting Functions for Time Series and Linear Models (2018)

    Google Scholar 

  29. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008)

    Google Scholar 

  30. Isa, A.M., Niimura, T., Sakamoto, N., Ozawa, K., Yokoyama, R.: Electricity market forecasting using artificial neural network models optimized by grid computing. IFAC Proc. Vol. 42(9), 273–277 (2009)

    Google Scholar 

  31. Knittel, C.R., Roberts, M.R.: An empirical examination of restructured electricity prices. Energy Econ. 27(5), 791–817 (2005)

    Google Scholar 

  32. Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y.: Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 10(1), 841–851 (2017)

    Google Scholar 

  33. Koopman, S.J., Ooms, M., Carnero, M.A.: Periodic seasonal reg-ARFIMA–GARCH models for daily electricity spot prices. J. Am. Stat. Assoc. 102(477), 16–27 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Koutroumandis, T., Ioannou, K., Arabatzis, G.: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model. Energy Policy 37(9), 3627–3634 (2009)

    Google Scholar 

  35. Krzemien, A., Riesgo Fernández, P., Suárez Sánchez, A., Sánchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14(4), 203–210 (2015)

    Google Scholar 

  36. Lago, J., de Ridder, F., de Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)

    Google Scholar 

  37. Lago, J., de Ridder, F., Vrancx, P., de Schutter, B.: Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Appl. Energy 211, 890–903 (2018)

    Google Scholar 

  38. Maciejowska, K., Nowotarski, J., Weron, R.: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging. Int. J. Forecast. 32(3), 957–965 (2016)

    Google Scholar 

  39. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series (2015)

    Google Scholar 

  40. Mandal, P., Senjyu, T., Funabashi, T.: Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 47(15), 2128–2142 (2006)

    Google Scholar 

  41. Maniatis, P.: A Taxonomy of electricity demand forecasting techniques and a selection strategy. Int. J. Manag. Excel. 8(2), 881 (2017)

    Google Scholar 

  42. Marcjasz, G., Uniejewski, B., Weron, R.: On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks. Int. J. Forecast. 34(1) (2018)

    Google Scholar 

  43. Marín, J.B., Orozco, E.T., Velilla, E.: Forecasting electricity price in colombia: a comparison between neural network, ARMA process and hybrid models. Int. J. Energy Econ. Policy 8(3), 10 (2018)

    Google Scholar 

  44. Meier, J.-H., Schneider, S., Le, C.: Short-term electricity price forecasting using generalized additive models. In: Proceedings of the ICTERI Conference, Kiev (2019)

    Google Scholar 

  45. Meier, J.-H., Schneider, S., Schönfeldt, T., Schüller, P., Wanke, B.: Electricity price forecasting: a methodological ANN-based approach with special consideration of time series properties. In: ICTERI Conference, Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops. Part I: 6th International Workshop on Information Technologies in Economic Research (ITER), Kiev, Paper 5 (2018)

    Google Scholar 

  46. Mirakyan, A., Meyer-Renschhausen, M., Koch, A.: Composite forecasting approach, application for next-day electricity price forecasting. Energy Econ. 66, 228–237 (2017)

    Google Scholar 

  47. Misiorek, A., Trueck, S., Weron, R.: Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models. Stud. Nonlinear Dyn. Econ. 10(3) (2006)

    Google Scholar 

  48. Nogales, F.J., Contreras, X., Conejo, A.J., Espínola, R.: Forecasting next-day electricity prices by time series models. IEEE Trans. Power Syst. 17, 342–348 (2002)

    Google Scholar 

  49. Panapakidis, I.P., Dagoumas, A.S.: Day-ahead electricity price forecasting via the application of artificial neural network based models. Appl. Energy 172, 132–151 (2016)

    Google Scholar 

  50. Pierre, G., Goude, Y., Nedellec, R.: Semi-parametric models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32(3), 1038–1050 (2015)

    Google Scholar 

  51. Psaradellis, I., Sermpinis G.: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices. Int. J. Forecast. 32(4), 1268–1283 (2016)

    Google Scholar 

  52. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  53. Schimek, M.G., Turlach, B.A.: Additive and generalized additive models: a survey. SFB 373 Discussion Papers (1998)

    Google Scholar 

  54. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 46–464 (1978)

    MathSciNet  Google Scholar 

  55. Serinaldi, F.: Distributional modeling and short-term forecasting of electricity prices by generalized additive models for location, scale and shape. Energy Econ. 33(6), 1216–1226 (2011)

    Google Scholar 

  56. Shahidehpour, M., Yamin, H., Li, Z.: Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley, New Jersey (2002)

    Google Scholar 

  57. Stasinopoulos, M.D., Rigby, R.A.: Generalized additive models for location scale and shape. J. R. Stat. Soc. 54(3), 507–554 (2005)

    MathSciNet  MATH  Google Scholar 

  58. Stasinopoulos, M.D., Rigby, R.A.: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23(7), 744–763 (2007)

    Google Scholar 

  59. Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014)

    Google Scholar 

  60. Weron, R., Misiorek, A.: Short-term electricity price forecasting with time series models: a review and evaluation. In: Mielczarski, W. (ed.) Complex Electricity Markets, pp. 231–254 (2006)

    Google Scholar 

  61. Weron, R., Misiorek, A.: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models. Int. J. Forecast. 24, 744–763 (2008)

    Google Scholar 

  62. Wood, S.N.: Generalized Additive Models: An Introduction with R, 2nd edn. Chapman & Hall, London (2017)

    MATH  Google Scholar 

  63. Yamashita, D., Isa, A.M., Yokoyama, R., Niimura, T.: Forecasting of electricity price and demand using autoregressive neural networks. IFAC Proc. Vol. 41(2), 14934–14938 (2008)

    Google Scholar 

  64. Yamin, H., Shahidehpour, S., Li, Z.: Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets. Int. J. Electr. Power Energy Syst. 26(8), 571–581 (2004)

    Google Scholar 

  65. Zareipour, H., Canizares, C.A., Bhattacharya, K., Thomson, J.: Application of public-domain market information to forecast Ontario’s wholesale electricity prices. IEEE Trans. Power Syst. 21(4), 1707–1717 (2006)

    Google Scholar 

  66. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    MATH  Google Scholar 

  67. Zhang, G., Patuwo, E.B., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Google Scholar 

  68. Zhou, M., Yan, Z., Ni, Y.X., Li, G., Nie, Y.: Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach. IEE Proc. Gener. Transm. Distrib. 153(2), 187 (2006)

    Google Scholar 

  69. Ziel, F., Steinert, R., Husmann, S.: Efficient modeling and forecasting of electricity spot prices. Energy Econ. 47, 99 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meier, JH., Schneider, S., Le, C., Schmidt, I. (2020). Short-Term Electricity Price Forecasting: Deep ANN vs GAM. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2019. Communications in Computer and Information Science, vol 1175. Springer, Cham. https://doi.org/10.1007/978-3-030-39459-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39459-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39458-5

  • Online ISBN: 978-3-030-39459-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics