Abstract
Examining the spot price series of electricity over the course of time, it is striking that the electricity price across the day takes a course that is determined by power consumption following a day and night rhythm. The daily course changes in its height and temporal extent in both, the course of the week, as well as with the course of the year. This study deals methodologically with this intra-day and seasonal behaviour. We compare the forecasting accuracy of Deep Artificial Neural Nets (ANN) of different architectures and Generalized Additive Models (GAM) and apply these models with European data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adebiyi, A.A., Adewumi, A.O., Ayo, C.K.: Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 1–7 (2014)
Aggarwal, S.K., Saini, L.M., Kumar, A.: Electricity price forecasting in deregulated markets: a review and evaluation. Int. J. Electr. Power Energy Syst. 31(1), 13–22 (2019)
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267–281 (1973)
Barrow, D., Kourentzes, N.: The impact of special days in call arrivals forecasting: a neural network approach to modelling special days. Eur. J. Oper. Res. 264(3), 967–977 (2018)
Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)
Bierbrauer, M., Menn, C., Rachev, S.T., Trück, S.: Spot and derivative pricing in the EEX power market. J. Bank. Financ. 31(11), 3462–3485 (2007)
Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control (2. Printing). Holden-Day, San Francisco (1971)
Cerjan, M., Matijaš, M., Delimar, M.: Dynamic hybrid model for short-term electricity price forecasting. Energies 7(5), 3304–3318 (2014)
Conejo, A.J., Contreras, J., Espínola, R., Plazas, M.A.: Forecasting electricity prices for a day-ahead pool-based electric energy market. Int. J. Forecast. 21(3), 435–462 (2005)
Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 20(2), 1035–1042 (2005)
Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003)
Dudek, G.: Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. Int. J. Forecast. 32(3), 1057–1060 (2016)
Fan, S., Hyndman, R.J.: Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst. 27(1), 134–141 (2012)
Filho, J.C.R., de Affonso, C.M., de Oliviera, R.C.L.: Energy price prediction multi-step ahead using hybrid model in the Brazilian market. Electr. Power Syst. Res. 117, 115–122 (2014)
Gajowniczek, K., Ząbkowski, T.: Short term electricity forecasting using individual smart meter data. Procedia Comput. Sci. 35, 589–597 (2014)
Garcia, R.C., Contreras, J., van Akkeren, M., Garcia, J.B.C.: A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)
Geman, H., Roncoroni, A.: Understanding the fine structure of electricity prices. J. Bus. 79(3), 1225–1261 (2006)
Ghiassi, M., Saidane, H., Zimbra, D.K.: A dynamic artificial neural network model for forecasting time series events. Int. J. Forecast. 21(2), 341–362 (2005)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)
Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)
Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall, London (1990)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hong, T.: Energy forecasting: past, present, and future. Foresight Int. J. Appl. Forecast. 32, 43–48 (2014)
Hope, E., Rud, L., Singh, B.: Electricity futures market. In: Lesourd, J.-B., Percebois, J., Valette, F. (eds.) Models for Energy Policy, pp. 238–249. Routledge, New York (1996)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
Hu, Z., Yang, L., Wang, Z., Gan, D., Sun, W., Wang, K.: A game-theoretic model for electricity markets with tight capacity constraints. Int. J. Electr. Power Energy Syst. 30(3), 207–215 (2008)
Hyndman, R.J.: R Package “forecast”: Forecasting Functions for Time Series and Linear Models (2018)
Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008)
Isa, A.M., Niimura, T., Sakamoto, N., Ozawa, K., Yokoyama, R.: Electricity market forecasting using artificial neural network models optimized by grid computing. IFAC Proc. Vol. 42(9), 273–277 (2009)
Knittel, C.R., Roberts, M.R.: An empirical examination of restructured electricity prices. Energy Econ. 27(5), 791–817 (2005)
Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y.: Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 10(1), 841–851 (2017)
Koopman, S.J., Ooms, M., Carnero, M.A.: Periodic seasonal reg-ARFIMA–GARCH models for daily electricity spot prices. J. Am. Stat. Assoc. 102(477), 16–27 (2007)
Koutroumandis, T., Ioannou, K., Arabatzis, G.: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model. Energy Policy 37(9), 3627–3634 (2009)
Krzemien, A., Riesgo Fernández, P., Suárez Sánchez, A., Sánchez Lasheras, F.: Forecasting European thermal coal spot prices. J. Sustain. Min. 14(4), 203–210 (2015)
Lago, J., de Ridder, F., de Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)
Lago, J., de Ridder, F., Vrancx, P., de Schutter, B.: Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Appl. Energy 211, 890–903 (2018)
Maciejowska, K., Nowotarski, J., Weron, R.: Probabilistic forecasting of electricity spot prices using factor quantile regression averaging. Int. J. Forecast. 32(3), 957–965 (2016)
Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series (2015)
Mandal, P., Senjyu, T., Funabashi, T.: Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 47(15), 2128–2142 (2006)
Maniatis, P.: A Taxonomy of electricity demand forecasting techniques and a selection strategy. Int. J. Manag. Excel. 8(2), 881 (2017)
Marcjasz, G., Uniejewski, B., Weron, R.: On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks. Int. J. Forecast. 34(1) (2018)
Marín, J.B., Orozco, E.T., Velilla, E.: Forecasting electricity price in colombia: a comparison between neural network, ARMA process and hybrid models. Int. J. Energy Econ. Policy 8(3), 10 (2018)
Meier, J.-H., Schneider, S., Le, C.: Short-term electricity price forecasting using generalized additive models. In: Proceedings of the ICTERI Conference, Kiev (2019)
Meier, J.-H., Schneider, S., Schönfeldt, T., Schüller, P., Wanke, B.: Electricity price forecasting: a methodological ANN-based approach with special consideration of time series properties. In: ICTERI Conference, Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops. Part I: 6th International Workshop on Information Technologies in Economic Research (ITER), Kiev, Paper 5 (2018)
Mirakyan, A., Meyer-Renschhausen, M., Koch, A.: Composite forecasting approach, application for next-day electricity price forecasting. Energy Econ. 66, 228–237 (2017)
Misiorek, A., Trueck, S., Weron, R.: Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models. Stud. Nonlinear Dyn. Econ. 10(3) (2006)
Nogales, F.J., Contreras, X., Conejo, A.J., Espínola, R.: Forecasting next-day electricity prices by time series models. IEEE Trans. Power Syst. 17, 342–348 (2002)
Panapakidis, I.P., Dagoumas, A.S.: Day-ahead electricity price forecasting via the application of artificial neural network based models. Appl. Energy 172, 132–151 (2016)
Pierre, G., Goude, Y., Nedellec, R.: Semi-parametric models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32(3), 1038–1050 (2015)
Psaradellis, I., Sermpinis G.: Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices. Int. J. Forecast. 32(4), 1268–1283 (2016)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Schimek, M.G., Turlach, B.A.: Additive and generalized additive models: a survey. SFB 373 Discussion Papers (1998)
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 46–464 (1978)
Serinaldi, F.: Distributional modeling and short-term forecasting of electricity prices by generalized additive models for location, scale and shape. Energy Econ. 33(6), 1216–1226 (2011)
Shahidehpour, M., Yamin, H., Li, Z.: Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley, New Jersey (2002)
Stasinopoulos, M.D., Rigby, R.A.: Generalized additive models for location scale and shape. J. R. Stat. Soc. 54(3), 507–554 (2005)
Stasinopoulos, M.D., Rigby, R.A.: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23(7), 744–763 (2007)
Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014)
Weron, R., Misiorek, A.: Short-term electricity price forecasting with time series models: a review and evaluation. In: Mielczarski, W. (ed.) Complex Electricity Markets, pp. 231–254 (2006)
Weron, R., Misiorek, A.: Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models. Int. J. Forecast. 24, 744–763 (2008)
Wood, S.N.: Generalized Additive Models: An Introduction with R, 2nd edn. Chapman & Hall, London (2017)
Yamashita, D., Isa, A.M., Yokoyama, R., Niimura, T.: Forecasting of electricity price and demand using autoregressive neural networks. IFAC Proc. Vol. 41(2), 14934–14938 (2008)
Yamin, H., Shahidehpour, S., Li, Z.: Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets. Int. J. Electr. Power Energy Syst. 26(8), 571–581 (2004)
Zareipour, H., Canizares, C.A., Bhattacharya, K., Thomson, J.: Application of public-domain market information to forecast Ontario’s wholesale electricity prices. IEEE Trans. Power Syst. 21(4), 1707–1717 (2006)
Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)
Zhang, G., Patuwo, E.B., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)
Zhou, M., Yan, Z., Ni, Y.X., Li, G., Nie, Y.: Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach. IEE Proc. Gener. Transm. Distrib. 153(2), 187 (2006)
Ziel, F., Steinert, R., Husmann, S.: Efficient modeling and forecasting of electricity spot prices. Energy Econ. 47, 99 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Meier, JH., Schneider, S., Le, C., Schmidt, I. (2020). Short-Term Electricity Price Forecasting: Deep ANN vs GAM. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2019. Communications in Computer and Information Science, vol 1175. Springer, Cham. https://doi.org/10.1007/978-3-030-39459-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-39459-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39458-5
Online ISBN: 978-3-030-39459-2
eBook Packages: Computer ScienceComputer Science (R0)