Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Design Patent Images Classification Based on Image Caption Model

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1420 Accesses

Abstract

Improving the performance of the patented image retrieval system is of great significance in the intellectual property protection. The design patent image has a large amount of data, and how to quickly complete the retrieval is part of the main research issues for the design patent retrieval system. Classification is an effective way to improve the retrieval speed, so some methods of image classification have been proposed before. However, image classification cannot achieve high-level semantic classification. Thus the speed of improvement is very limited. In order to realize the classification effect of high-level semantics, in this paper, we propose a method that uses the image caption model-based to realize the automatic description generation of the design patent image. Experiments show that our method has better classification accuracy and better semantic classification performance than previous image classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fang, L., Lerner, J., Wu, C.: Intellectual property rights protection, ownership, and innovation: evidence from China. Rev. Financ. Stud. 30(7), 2446–2447 (2017)

    Article  Google Scholar 

  2. Shalaby, W., Zadrozny, W.: Patent retrieval: a literature review. Knowl. Inf. Syst. 1–30 (2017)

    Google Scholar 

  3. Vrochidis, S., Papadopoulos, S., Moumtzidou, A.: Towards content-based patent image retrieval: a framework perspective. World Patent Inf. 32(2), 94–106 (2010)

    Article  Google Scholar 

  4. Rehman, M., Iqbal, M., Sharif, M.: Content based image retrieval: survey. World Appl. Sci. J. 19(3), 404–412 (2012)

    Google Scholar 

  5. Wan, J., Wang, D., Hoi, S.C.H.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157–166. ACM, New York (2014)

    Google Scholar 

  6. Csurka, G.: Document image classification, with a specific view on applications of patent images. In: Lupu, M., Mayer, K., Kando, N., Trippe, A. (eds.) Current Challenges in Patent Information Retrieval. TIRS, vol. 37, pp. 325–350. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53817-3_12

    Chapter  Google Scholar 

  7. Xuming, L., Qingyun, D., Jiangzhong, C., et al.: Design patent image retrieval system based on semantic classification. Comput. Eng. Appl. 48(16), 202–206 (2012)

    Google Scholar 

  8. Senhong, W.: Research on classification methods of design patent image. Guangdong University of Technology, Guangzhou, Guangdong (2013)

    Google Scholar 

  9. Ni, H., Guo, Z., Huang, B.: Patent image classification using local-constrained linear coding and spatial pyramid matching. In: 2015 International Conference on Service Science. IEEE, Weihai, China (2015)

    Google Scholar 

  10. Vrochidis, S., Moumtzidou, A., Kompatsiaris, I.: Enhancing patent search with content-based image retrieval. In: Paltoglou, G., Loizides, F., Hansen, P. (eds.) Professional Search in the Modern World. LNCS, vol. 8830, pp. 250–273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12511-4_12

    Chapter  Google Scholar 

  11. Hossain, M.D., Sohel, F., Shiratuddin, M.F., et al.: A comprehensive survey of deep learning for image captioning. ACM Comput. Surv. CSUR 51(6), 118 (2019)

    Google Scholar 

  12. Peng, Y., Liu, X., Wang, W., Zhao, X., Wei, M.: Image caption model of double LSTM with scene factors. Image Vis. Comput. 86, 38–44 (2019)

    Article  Google Scholar 

  13. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, USA, pp. 3156–3164 (2015)

    Google Scholar 

  14. Xu, K., Ba, J., Kiros, R., Courville, A., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning 2015, ICML, Lille, France, pp. 2048–2057 (2015)

    Google Scholar 

  15. Lu, J., Xiong, C., Parikh, D., et al.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, Hawaii, pp. 375–383 (2017)

    Google Scholar 

  16. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 6077–6086 (2018)

    Google Scholar 

  17. Gao, L., Li, X., Song, J., et al.: Hierarchical LSTMs with adaptive attention for visual captioning. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  20. Sundermeyer, M., Ney, H., Schlüter, R.: From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 517–529 (2015)

    Article  Google Scholar 

  21. Song, S., Huang, H., Ruan, T.: Abstractive text summarization using LSTM-CNN based deep learning. Multimed. Tools Appl. 78(1), 857–875 (2019)

    Article  Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, LasVegas, Nevada, pp. 2818–2826 (2016)

    Google Scholar 

  23. Microsoft COCO caption Evaluation. https://github.com/tylin/coco-caption. 17 Mar 2015

  24. Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking task: data, models and evaluation metrics. J. Artif. Intell. Res. 47, 853–899 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zhang, A., Sun, G., Ren, J.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2016)

    Article  Google Scholar 

  26. Zheng, J., Liu, Y., Ren, J., et al.: Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimension. Syst. Signal Process. 27(4), 989–1005 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yan, Y., Ren, J., Sun, G., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  28. Sun, M., Zhang, D., Wang, Z., et al.: Monte Carlo convex hull model for classification of traditional Chinese paintings. Neurocomputing 171, 788–797 (2016)

    Article  Google Scholar 

  29. Ren, J., Wang, D.: Effective recognition of MCCs in mammograms using an improved neural classifier. Eng. Appl. Artif. Intell. 24(4), 638–645 (2011)

    Article  Google Scholar 

  30. Yan, Y., Ren, J., Zhao, H., et al.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cogn. Comput. 10(1), 94–104 (2018)

    Article  Google Scholar 

  31. Ren, J., Vlachos, T.: Efficient detection of temporally impulsive dirt impairments in archived films. Signal Process. 87(3), 541–551 (2007)

    Article  Google Scholar 

  32. Zhou, Y., et al.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cogn. Comput. 8(5), 877–889 (2016)

    Article  Google Scholar 

  33. Ren, J., et al.: Multi-camera video surveillance for real-time analysis and reconstruction of soccer games. Mach. Vis. Appl. 21(6), 855–863 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research on Optimization Theory and Key Technology of Intelligent Search for Design Patent (1741333) Design Patent Image Retrieval Method and Application (572020144), and Guangdong Provincial Key Laboratory Project (2018B030322016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Dai, Q., Li, Y., Zhang, C., Yi, S., Yuan, T. (2020). The Design Patent Images Classification Based on Image Caption Model. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics