Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Approaches to Basic Calculus: An Experimentation via Numerical Computation

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The introduction of the first elements of calculus both in the first university year and in the last class of high schools, presents many problems both in Italy and abroad. Emblematic are the (numerous) cases in which students decide to change their course of study or give it up completely cause the difficulties with the first exam of mathematics, which usually deals with basic calculus. This work concerns an educational experimentation involving (with differentiated methods) about 170 students, part at the IPS “F. Besta” in Treviso (IT) with main focus on two 5th classes where the students’ age is about 19 years old, and part at the Liceo Classico Scientifico “XXV Aprile” in Pontedera, prov. of Pisa (IT). The experimental project aims to explore the teaching potential offered by non-classical approaches to calculus jointly with the so-called “unimaginable numbers”. In particular, we employed the computational method recently proposed by Y.D. Sergeyev and widely used both in mathematics, in applied sciences and, recently, also for educational purposes. In the paper will be illustrated tools, investigation methodologies, collected data (before and after the teaching unit), and the results of various class tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The paper [4] concerns a rather complex two-year experimental project conducted at the University of Calabria within the Master’s Degree Program in Electronic Engineering. There, once two groups were formed each year, an experimental one equipped with computer-based tools and a control group associated with more traditional teaching methods, the aim was to analyze a series of student performances. We inform the reader that in the experimentations described in the present paper, we will find some slight traces of part of the methods used in [4]; the most visible is the employ of the computational system called Infinity Computer which will be used by a (very small) part of the sample, creating a hint of parallelism with the role of the software used in [4].

  2. 2.

    The mathematical intuition will be important also for us, when our students will work with the infinite and, in particular, when they will approach the new concept of grossone (see also [44]).

  3. 3.

    See, for instance, the manual [22] adopted in many academic courses and now in its third edition. See also [17] for an interesting comparison between Leibniz’ and Robinson’s systems and “Sarah”s conceptions”.

  4. 4.

    See, for instance, [16, page 2] and the proceedings [7] of the national Italian conference “Analisi nonstandard per le scuole superiori. VII Giornata di studio”. This conference takes place every year and has now reached its ninth edition, Verona, October 5, 2019.

  5. 5.

    The numbers used here to enumerate questions are different from those in the students’ test (cf. [21, Sect. 3]). We moreover precise that in some classes in Trento we prepared two or four test versions changing for the order of questions and answers, to prevent, together with other appropriate measures, any kind of influence among students.

References

  1. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Peano’s, Hilbert’s and Moore’s curves. Mediterr. J. Math. to appear

    Google Scholar 

  2. Bertacchini, F., Bilotta, E., Pantano, P., Tavernise, A.: Motivating the learning of science topics in secondary schools: a constructivistic edutainment setting for studing Chaos. Comput. Educ. 59(4), 1377–1386 (2012)

    Article  Google Scholar 

  3. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: Complex interactions in one-dimensional cellular automata and linguistic constructions. Appl. Math. Sci. 12(15), 691–721 (2018). https://doi.org/10.12988/ams.2018.8353

    Article  Google Scholar 

  4. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. Int. J. Math. Educ. Sci. Technol. 50(1), 100–120 (2019). https://doi.org/10.1080/0020739X.2018.1478134

    Article  Google Scholar 

  5. Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P., Renteria Bustamante, L.: Emergence of linguistic-like structures in one-dimensional cellular automata. In: Sergeyev, Ya.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) 2nd International Conference on NUMTA 2016 - Numerical Computations: Theory and Algorithms, AIP Conference Proceedings, vol. 1776, p. 090044. AIP Publ., New York (2016). https://doi.org/10.1063/1.4965408

  6. Blakley, G.R., Borosh, I.: Knuth’s iterated powers. Adv. Math. 34(2), 109–136 (1979). https://doi.org/10.1016/0001-8708(79)90052-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonavoglia, P. (ed.): Atti del convegno della VII Giornata Nazionale di Analisi non Standard per le scuole superiori, Venezia, 30 settembre 2017. Edizioni Aracne, Roma (2017). (in Italian)

    Google Scholar 

  8. Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    Article  MATH  Google Scholar 

  9. Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026

    Article  MathSciNet  Google Scholar 

  10. Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, Cham (2020)

    Google Scholar 

  11. Caldarola, F., d’Atri, G., Maiolo, M.: What are the unimaginable numbers? Submitted for publication

    Google Scholar 

  12. Caldarola, F., d’Atri, G., Mercuri, P., Talamanca, V.: On the arithmetic of Knuth’s powers and some computational results about their density. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 381–388. Springer, Cham (2020)

    Google Scholar 

  13. Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019

    Article  Google Scholar 

  14. Cornu, B.: Quelques obstacles à l’apprentissage de la notion de limite. Recherches en Didactique des Mathematiques 4, 236–268 (1983)

    Google Scholar 

  15. Davis, R.B., Vinner, S.: The notion of limit: some seemingly unavoidable misconception stages. J. Math. Behav. 5, 281–303 (1986)

    Google Scholar 

  16. Di Nasso, M.: Un’introduzione all’analisi con infinitesimi. In: Analisi nonstandard per le scuole superiori - V Giornata di studio, Atti del convegno, Verona, 10 Ottobre 2015, Matematicamente.it (2016). (in Italian)

    Google Scholar 

  17. Ely, R.: Nonstandard student conceptions about infinitesimals. J. Res. Math. Educ. 41(2), 117–146 (2010)

    Google Scholar 

  18. Ervynck, G.: Conceptual difficulties for first year university students in the acquisition of the notion of limit of a function. In: Proceedings of the Fifth Conference of the International Group for the Psychology of Mathematics Education, pp. 330–333 (1981)

    Google Scholar 

  19. Guzman, M., Hodgson, B., Robert, A., Villani, V.: Difficulties in the passage from secondary to tertiary education. In: Fischer, G., Rehmann, U. (eds.) Proceedings of the International Congress of Mathematicians, Berlin 1998, vol. 3, pp. 747–762 (1998)

    Google Scholar 

  20. Iannone, P., Rizza, D., Thoma, A.: Investigating secondary school students’ epistemologies through a class activity concerning infinity. In: Bergqvist, E., et al. (eds.) Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, Umeå(Sweden), vol. 3, pp. 131–138. PME (2018)

    Google Scholar 

  21. Ingarozza, F., Adamo, M.T., Martino, M., Piscitelli, A.: A Grossone-Based Numerical Model for Computations with Infinity: A Case Study in an Italian High School. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39081-5_39

    Chapter  Google Scholar 

  22. Keisler, H.J.: Elementary Calculus: An Approach Using Innitesimals, 3rd edn. Dover Publications (2012)

    Google Scholar 

  23. Khan, S.: New pedagogies on teaching science with computer simulations. J. Sci. Educ. Technol. 20, 215–232 (2011)

    Article  Google Scholar 

  24. Klymchuk, S., Zverkova, T., Gruenwald, N., Sauerbier, G.: University students’ difficulties in solving application problems in calculus: student perspectives. Math. Educ. Res. J. 22(2), 81–91 (2010)

    Article  Google Scholar 

  25. Knuth, D.E.: Mathematics and computer science: coping with finiteness. Science 194(4271), 1235–1242 (1976). https://doi.org/10.1126/science.194.4271.1235

    Article  MathSciNet  MATH  Google Scholar 

  26. Lithner, J.: Students’ mathematical reasoning in university textbook exercises. Educ. Stud. Math. 52, 29–55 (2003)

    Article  Google Scholar 

  27. Lithner, J.: Mathematical reasoning in calculus textbook exercises. J. Math. Behav. 23, 405–427 (2004)

    Article  Google Scholar 

  28. Lithner, J.: University students’ learning difficulties. Educ. Inquiry 2(2), 289–303 (2011)

    Article  Google Scholar 

  29. Muzangwa, J., Chifamba, P.: Analysis of errors and misconceptions in the learning of calculus by undergraduate students. Acta Didactica Napocensia 5(2) (2012)

    Google Scholar 

  30. Rizza, D.: Primi passi nell’aritmetica dell’infinito. Preprint (2019)

    Google Scholar 

  31. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–96 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Cosenza (2003)

    Google Scholar 

  33. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinskinski’s carpet and volume of Menger’s sponge. Chaos Solitons Fractals 42(5), 3042–6 (2009)

    Article  Google Scholar 

  34. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–85 (2011)

    Article  MathSciNet  Google Scholar 

  35. Sergeyev, Y.D.: (2004). http://www.theinfinitycomputer.com

  36. Sergeyev, Y.D.: Lagrange Lecture: methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico Università e Politecnico di Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  37. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer. Appl. Math. Comput. 219(22), 10668–81 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica, Cultura e Società: Rivista dell’Unione Matematica Italiana 8(1), 111–47 (2015). (in Italian)

    Google Scholar 

  39. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–76 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  41. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the Infinity Computer. Int. J. Unconv. Comput. 12(1), 55–66 (2016)

    Google Scholar 

  42. Sierpinska, A.: Humanities students and epistemological obstacles related to limits. Educ. Stud. Math. 18, 371–397 (1987)

    Article  Google Scholar 

  43. Steinberg, R.N.: Computer in teaching science: to simulate or not simulate? Phys. Educ. Res.: Am. J. Phys. Suppl. 68(7), S37 (2000)

    Google Scholar 

  44. Tall, D.: A child thinking about infinity. J. Math. Behav. 20, 7–19 (2001)

    Article  Google Scholar 

  45. Tall, D.: Mathematical intuition, with special reference to limiting processes. In: Proceedings of the Fourth International Conference for the Psychology of Mathematics Education, pp. 170–176 (1980)

    Google Scholar 

  46. Tall, D.: The transition to advanced mathematical thinking: functions, limits, infinity and proof. In: Grouws, D. (ed.) Handbook for Research on Mathematics Teaching and Learning, pp. 495–511. Macmillan, New York (1992)

    Google Scholar 

  47. Tall, D., Vinner, S.: Concept image and concept definition in mathematics with particular reference to limits and continuity. Educ. Stud. Math. 12, 151–169 (1981)

    Article  Google Scholar 

  48. Williams, S.R.: Models of limit held by college calculus students. J. Res. Math. Educ. 22(3), 219–236 (1991)

    Article  Google Scholar 

Download references

Aknowledgments

This work is partially supported by the research projects “IoT&B, Internet of Things and Blockchain”, CUP J48C17000230006, POR Calabria FESR-FSE 2014-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caldarola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M. (2020). New Approaches to Basic Calculus: An Experimentation via Numerical Computation. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics