Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive RBF Interpolation for Estimating Missing Values in Geographical Data

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The quality of datasets is a critical issue in big data mining. More interesting things could be found for datasets with higher quality. The existence of missing values in geographical data would worsen the quality of big datasets. To improve the data quality, the missing values are generally needed to be estimated using various machine learning algorithms or mathematical methods such as approximations and interpolations. In this paper, we propose an adaptive Radial Basis Function (RBF) interpolation algorithm for estimating missing values in geographical data. In the proposed method, the samples with known values are considered as the data points, while the samples with missing values are considered as the interpolated points. For each interpolated point, first, a local set of data points are adaptively determined. Then, the missing value of the interpolated point is imputed via interpolating using the RBF interpolation based on the local set of data points. Moreover, the shape factors of the RBF are also adaptively determined by considering the distribution of the local set of data points. To evaluate the performance of the proposed method, we compare our method with the commonly used k-Nearest Neighbor (kNN) interpolation and Adaptive Inverse Distance Weighted (AIDW) interpolation, and conduct three groups of benchmark experiments. Experimental results indicate that the proposed method outperforms the kNN interpolation and AIDW interpolation in terms of accuracy, but worse than the kNN interpolation and AIDW interpolation in terms of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barone, G.B., et al.: An approach to forecast queue time in adaptive scheduling: how to mediate system efficiency and users satisfaction. Int. J. Parallel Program. 45(5), 1–30 (2016)

    Google Scholar 

  2. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: Reconstruction of implicit curves and surfaces via rbf interpolation. Appl. Numer. Math. 116, 60–63 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Cuomo, S., Gallettiy, A., Giuntay, G., Staracey, A.: Surface reconstruction from scattered point via RBF interpolation on GPU (2013)

    Google Scholar 

  4. Ding, Z., Mei, G., Cuomo, S., Tian, H., Xu, N.: Accelerating multi-dimensional interpolation using moving least-squares on the GPU. Concurr. Comput. 30(24), e4904 (2018)

    Article  Google Scholar 

  5. Ding, Z., Gang, M., Cuomo, S., Li, Y., Xu, N.: Comparison of estimating missing values in IoT time series data using different interpolation algorithms. Int. J. Parallel Programm. 1–15 (2018)

    Google Scholar 

  6. Ding, Z., Gang, M., Cuomo, S., Xu, N., Hong, T.: Performance evaluation of gpu-accelerated spatial interpolation using radial basis functions for building explicit surfaces. Int. J. Parallel Programm. 157, 1–29 (2017)

    Google Scholar 

  7. Gao, D., Liu, Y., Meng, J., Jia, Y., Fan, C.: Estimating significant wave height from SAR imagery based on an SVM regression model. Acta Oceanol. Sinica 37(3), 103–110 (2018)

    Article  Google Scholar 

  8. Kedward, L., Allen, C.B., Rendall, T.C.S.: Efficient and exact mesh deformation using multiscale rbf interpolation. J. Computat. Phys. 345, 732–751 (2017)

    Article  MathSciNet  Google Scholar 

  9. Keogh, R.H., Seaman, S.R., Bartlett, J.W., Wood, A.M.: Multiple imputation of missing data in nested case-control and case-cohort studies. Biometrics 74(4), 1438–1449 (2018)

    Article  MathSciNet  Google Scholar 

  10. Liang, Z., Na, Z., Wei, H., Feng, Z., Qiao, Q., Luo, M.: From big data to big analysis: a perspective of geographical conditions monitoring. Int. J. Image Data Fusion 9(3), 194–208 (2018)

    Article  Google Scholar 

  11. Lu, G.Y., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008)

    Article  Google Scholar 

  12. Mei, G., Xu, N., Xu, L.: Improving GPU-accelerated adaptive IDW interpolation algorithm using fast KNN search. Springerplus 5(1), 1389 (2016)

    Article  Google Scholar 

  13. Skala, V.: RBF interpolation with CSRBF of large data sets. Proc. Comput. Sci. 108, 2433–2437 (2017)

    Article  Google Scholar 

  14. Sovilj, D., Eirola, E., Miche, Y., Bjork, K.M., Rui, N., Akusok, A., Lendasse, A.: Extreme learning machine for missing data using multiple imputations. Neurocomputing 174(PA), 220–231 (2016)

    Article  Google Scholar 

  15. Tang, T., Chen, S., Meng, Z., Wei, H., Luo, J.: Very large-scale data classification based on k-means clustering and multi-kernel SVM. Soft Comput. 1, 1–9 (2018)

    Google Scholar 

  16. Thakuriah, P.V., Tilahun, N.Y., Zellner, M.: Big data and urban informatics: innovations and challenges to urban planning and knowledge discovery. In: Thakuriah, P.V., Tilahun, N., Zellner, M. (eds.) Seeing Cities Through Big Data. SG, pp. 11–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40902-3_2

    Chapter  Google Scholar 

  17. Tomita, H., Fujisawa, H., Henmi, M.: A bias-corrected estimator in multiple imputation for missing data. Stat. Med. 47(1), 1–16 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (11602235), and the Fundamental Research Funds for China Central Universities (2652018091, 2652018107, and 2652018109). The authors would like to thank the editor and the reviewers for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, K., Mei, G., Cuomo, S., Piccialli, F., Xu, N. (2020). Adaptive RBF Interpolation for Estimating Missing Values in Geographical Data. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics