Abstract
Accurate segmentation of the shape of the left atrium (LA) is important for treatment of atrial fibrillation (AF) by catheter ablation. Interventional 3D rotational angiography (3DRA) can be used to obtain 3D images during the intervention. Low dose 3DRA poses segmentation challenges due to high image noise. There is a significant amount of research focusing on the automatic segmentation from 3DRA images, all based on an active shape or atlas-based approaches.
We present an algorithm based on a 3D deep convolutional neural network (CNN) for automated segmentation of 3DRA images to predict the shape of the LA. The CNN is based on the U-Net architecture and consists of an encoder and a decoder part. It is designed to be trained end-to-end from scratch on interactive semi-automated 3DRA images, which include the body of the LA and the proximal pulmonary veins up to the first branching vessel.
The CNN is trained and validated using 5-fold cross-validation on 20 3DRA images by computing the Dice score (0.959 ± 0.015), recall (0.962 ± 0.026), precision (0.957 ± 0.021) and mean surface distance (0.716 ± 0.276 mm). We further validated the algorithm on an additional data set of 5 images. The algorithm achieved a Dice score and mean surface distance of 0.937 ± 0.016 and 1.500 ± 0.368 respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajpai, A., Savelieva, I., Camm, A.J.: Treatment of atrial fibrillation. Br. Med. Bull. 88(1), 75–94 (2008)
von Berg, J., Lorenz, C.: Accurate left atrium segmentation in multislice CT images using a shape model. In: Fitzpatrick, J.M., Reinhardt, J.M. (eds.) Medical Imaging 2005: Image Processing, vol. 5747, p. 351. International Society for Optics and Photonics (2005)
De Buck, S., et al.: Cardiac three-dimensional rotational angiography can be performed with low radiation dose while preserving image quality. Europace 15(12), 1718–1724 (2013)
De Buck, S., et al.: An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures. IEEE Trans. Med. Imaging 24(11), 1512–1524 (2005)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision 2015 International Conference on Computer Vision, ICCV 2015, pp. 1026–1034 (2015)
Manzke, R., et al.: Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans. Med. Imaging 29(2), 260–272 (2010)
Mortazi, A., Karim, R., Rhode, K., Burt, J., Bagci, U.: CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 377–385. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_43
Nakagawa, H., et al.: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14(10), e275–e444 (2017)
Robben, D., Bertels, J., Willems, S., Vandermeulen, D., Maes, F., Paul, S.: DeepVoxNet: voxel-wise prediction for 3D images (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Stender, B., Blanck, O., Wang, B., Schlaefer, A.: Model-based segmentation of the left atrium in CT and MRI scans. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 201. LNCS, vol. 8330, pp. 31–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54268-8_4
Thiagalingam, A., et al.: Intraprocedural volume imaging of the left atrium and pulmonary veins with rotational X-ray angiography: implications for catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 19(3), 293–300 (2008)
Wyndham, C.R.: Atrial fibrillation: the most common arrhythmia. Texas Heart Inst. J. 27(3), 257–67 (2000)
Zheng, Y., Wang, T., John, M., Zhou, S.K., Boese, J., Comaniciu, D.: Multi-part left atrium modeling and segmentation in C-Arm CT volumes for atrial fibrillation ablation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 487–495. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_60
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bamps, K. et al. (2020). DeepLA: Automated Segmentation of Left Atrium from Interventional 3D Rotational Angiography Using CNN. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-39074-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39073-0
Online ISBN: 978-3-030-39074-7
eBook Packages: Computer ScienceComputer Science (R0)