Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

Accurate segmentation of the shape of the left atrium (LA) is important for treatment of atrial fibrillation (AF) by catheter ablation. Interventional 3D rotational angiography (3DRA) can be used to obtain 3D images during the intervention. Low dose 3DRA poses segmentation challenges due to high image noise. There is a significant amount of research focusing on the automatic segmentation from 3DRA images, all based on an active shape or atlas-based approaches.

We present an algorithm based on a 3D deep convolutional neural network (CNN) for automated segmentation of 3DRA images to predict the shape of the LA. The CNN is based on the U-Net architecture and consists of an encoder and a decoder part. It is designed to be trained end-to-end from scratch on interactive semi-automated 3DRA images, which include the body of the LA and the proximal pulmonary veins up to the first branching vessel.

The CNN is trained and validated using 5-fold cross-validation on 20 3DRA images by computing the Dice score (0.959 ± 0.015), recall (0.962 ± 0.026), precision (0.957 ± 0.021) and mean surface distance (0.716 ± 0.276 mm). We further validated the algorithm on an additional data set of 5 images. The algorithm achieved a Dice score and mean surface distance of 0.937 ± 0.016 and 1.500 ± 0.368 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajpai, A., Savelieva, I., Camm, A.J.: Treatment of atrial fibrillation. Br. Med. Bull. 88(1), 75–94 (2008)

    Article  Google Scholar 

  2. von Berg, J., Lorenz, C.: Accurate left atrium segmentation in multislice CT images using a shape model. In: Fitzpatrick, J.M., Reinhardt, J.M. (eds.) Medical Imaging 2005: Image Processing, vol. 5747, p. 351. International Society for Optics and Photonics (2005)

    Google Scholar 

  3. De Buck, S., et al.: Cardiac three-dimensional rotational angiography can be performed with low radiation dose while preserving image quality. Europace 15(12), 1718–1724 (2013)

    Article  Google Scholar 

  4. De Buck, S., et al.: An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures. IEEE Trans. Med. Imaging 24(11), 1512–1524 (2005)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision 2015 International Conference on Computer Vision, ICCV 2015, pp. 1026–1034 (2015)

    Google Scholar 

  6. Manzke, R., et al.: Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans. Med. Imaging 29(2), 260–272 (2010)

    Article  Google Scholar 

  7. Mortazi, A., Karim, R., Rhode, K., Burt, J., Bagci, U.: CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 377–385. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_43

    Chapter  Google Scholar 

  8. Nakagawa, H., et al.: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14(10), e275–e444 (2017)

    Article  Google Scholar 

  9. Robben, D., Bertels, J., Willems, S., Vandermeulen, D., Maes, F., Paul, S.: DeepVoxNet: voxel-wise prediction for 3D images (2018)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Stender, B., Blanck, O., Wang, B., Schlaefer, A.: Model-based segmentation of the left atrium in CT and MRI scans. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 201. LNCS, vol. 8330, pp. 31–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54268-8_4

    Chapter  Google Scholar 

  12. Thiagalingam, A., et al.: Intraprocedural volume imaging of the left atrium and pulmonary veins with rotational X-ray angiography: implications for catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 19(3), 293–300 (2008)

    Article  Google Scholar 

  13. Wyndham, C.R.: Atrial fibrillation: the most common arrhythmia. Texas Heart Inst. J. 27(3), 257–67 (2000)

    Google Scholar 

  14. Zheng, Y., Wang, T., John, M., Zhou, S.K., Boese, J., Comaniciu, D.: Multi-part left atrium modeling and segmentation in C-Arm CT volumes for atrial fibrillation ablation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 487–495. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_60

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kobe Bamps , Stijn De Buck , Jeroen Bertels , Rik Willems , Christophe Garweg , Peter Haemers or Joris Ector .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bamps, K. et al. (2020). DeepLA: Automated Segmentation of Left Atrium from Interventional 3D Rotational Angiography Using CNN. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics