Nothing Special   »   [go: up one dir, main page]

Skip to main content

Globular Cluster Systems and Galaxy Formation

  • Chapter
  • First Online:
Reviews in Frontiers of Modern Astrophysics

Abstract

Globular clusters (GCs) are compact, gravitationally bound systems of up to ∼1 million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More generally, GCs are associated with galaxies of all types and masses, from low-mass dwarf galaxies to the most massive early-type galaxies which lie in the centres of massive galaxy clusters. GC systems show several properties which connect tightly with properties of their host galaxies. For example, the total mass of GCs in a system scales linearly with the dark matter halo mass of its host galaxy. Numerical simulations are at the point of being able to resolve globular cluster formation within a cosmological framework. Therefore, GCs link a range of scales, from the physics of star formation in turbulent gas clouds, to the large-scale properties of galaxies and their dark matter. In this chapter we review some of the basic observational approaches for GC systems, some of their key observational properties, and describe how GCs provide important clues to the formation of their parent galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is often called the “baryonic” component, since stars and gas are composed of protons and neutrons which are baryons (three quarks). The poor old electrons—which are leptons—are ignored in this terminology!

  2. 2.

    This qualifier is important to remember. Although GCs seem to have no dark matter now, this does not necessarily imply that they never had dark matter. Tidal processes could remove the vast majority of dark matter from a GC orbiting in a Milky Way-like potential over a Hubble time.

  3. 3.

    Stellar systems of masses at, or below that of GCs are observed, and they typically have very high mass-to-light ratios (ML V > 100) implying high dark matter fractions. However, these are generally low-concentration, low-surface brightness objects which are typically larger (r h > 50 pc) than GCs and are referred to as “ultra-faint dwarf” galaxies (UFDs; [13]).

  4. 4.

    The subject of photometry is a chapter in itself. Suffice to say that the standard techniques are reasonably straightforward, although a number of careful steps are required to achieve precise measurements.

  5. 5.

    The apparent movement on the sky of an object compared to a fixed background.

  6. 6.

    Parallax is the apparent change of position on the sky of an object when viewed from two different positions along a given baseline. If the length of the baseline is known, by measuring the parallax angle (i.e., how much the star appears to move), the distance to the star can be determined.

  7. 7.

    Magnesium and iron are produced in short-lived, massive stars which explode as type-II supernovae, whereas iron is produced in longer-lived, lower mass stars which is released in type Ia supernova explosions. Therefore [Mg/Fe] can be used as a chemical clock—generally the higher the ratio [Mg/Fe], the shorter the timescale of star formation since low-mass stars have not had time to pollute the interstellar medium.

  8. 8.

    Atomic diffusion is the collective term for processes that change the mixture of atmospheric abundances in stars due to gravity or radiation pressure. For example, heavier elements (e.g., Fe) tend to sink over long time-scales thereby lowering the observed surface abundance of the star.

  9. 9.

    https://physwww.mcmaster.ca/~harris/mwgc.dat.

  10. 10.

    Formed “in-place”. Astronomers like resorting to latin on occasion.

  11. 11.

    This is consistent with what we know about galaxy metallicities. Galaxies follow a stellar mass–metallicity relation in that more massive galaxies are, on average, more metal-rich. This is a consequence of the fact that more massive galaxies have more stars to form metals via nucleosynthesis, and are also better able to hold onto their gas “recycled” from star formation due to their deeper potential wells.

  12. 12.

    Here the term “field” refers to stars not in star clusters.

  13. 13.

    Not to be confused with “ultra-faint” galaxies which have smaller sizes and significantly lower stellar masses.

  14. 14.

    I.e., a model that describes relationships between observations, but does not stem directly from physical theory.

  15. 15.

    In the case of the SAM used by Beasley et al. [128], the main calibrations were to match the galaxy luminosity function and Tully-Fisher relations.

References

  1. J.P. Brodie, J. Strader, Annu. Rev. Astron. Astrophys. 44(1), 193 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092441

    Article  ADS  Google Scholar 

  2. R.G. Gratton, E. Carretta, A. Bragaglia, Astron. Astrophys. Rev. 20, 50 (2012). https://doi.org/10.1007/s00159-012-0050-3

    Article  ADS  Google Scholar 

  3. N. Bastian, C. Lardo, Annu. Rev. Astron. Astrophys. 56, 83 (2018). https://doi.org/10.1146/annurev-astro-081817-051839

    Article  ADS  Google Scholar 

  4. W.E. Harris, Annu. Rev. Astron. Astrophys. 29, 543 (1991). https://doi.org/10.1146/annurev.aa.29.090191.002551

    Article  ADS  Google Scholar 

  5. D.A. Forbes, N. Bastian, M. Gieles, R.A. Crain, J.M.D. Kruijssen, S.S. Larsen, S. Ploeckinger, O. Agertz, M. Trenti, A.M.N. Ferguson, J. Pfeffer, O.Y. Gnedin, Proc. R. Soc. London, Ser. A 474(2210), 20170616 (2018). https://doi.org/10.1098/rspa.2017.0616

  6. J. Silk, A. Di Cintio, I. Dvorkin, Proceedings of the International School of Physics ‘Enrico Fermi’ Course 186 ‘New Horizons for Observational Cosmology’, vol. 186 (2014), pp. 137–187. https://doi.org/10.3254/978-1-61499-476-3-137

    Google Scholar 

  7. M. Cappellari, Annu. Rev. Astron. Astrophys. 54, 597 (2016). https://doi.org/10.1146/annurev-astro-082214-122432

    Article  ADS  Google Scholar 

  8. J. Kennicutt, Robert C., Annu. Rev. Astron. Astrophys. 36, 189 (1998). https://doi.org/10.1146/annurev.astro.36.1.189

  9. A. Renzini, Annu. Rev. Astron. Astrophys. 44(1), 141 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092450

    Article  ADS  Google Scholar 

  10. J. Bland-Hawthorn, O. Gerhard, Annu. Rev. Astron. Astrophys. 54, 529 (2016). https://doi.org/10.1146/annurev-astro-081915-023441

    Article  ADS  Google Scholar 

  11. T. Naab, J.P. Ostriker, Annu. Rev. Astron. Astrophys. 55(1), 59 (2017). https://doi.org/10.1146/annurev-astro-081913-040019

    Article  ADS  Google Scholar 

  12. A.W. McConnachie, Astron. J. 144(1), 4 (2012). https://doi.org/10.1088/0004-6256/144/1/4

    Article  ADS  Google Scholar 

  13. J.D. Simon, Annu. Rev. Astron. Astrophys. 57, 375 (2019). https://doi.org/10.1146/annurev-astro-091918-104453

    Article  ADS  Google Scholar 

  14. I. King, Astron. J. 67, 471 (1962). https://doi.org/10.1086/108756

    Article  ADS  Google Scholar 

  15. C.J. Peterson, I.R. King, Astron. J. 80, 427 (1975). https://doi.org/10.1086/111759

    Article  ADS  Google Scholar 

  16. W.E. Harris, Astron. J. 112, 1487 (1996). https://doi.org/10.1086/118116

    Article  ADS  Google Scholar 

  17. G. Meylan, D.C. Heggie, Astron. Astrophys. Rev. 8, 1 (1997). https://doi.org/10.1007/s001590050008

    Article  ADS  Google Scholar 

  18. O.Y. Gnedin, J.P. Ostriker, Astrophys. J. 474(1), 223 (1997). https://doi.org/10.1086/303441

    Article  ADS  Google Scholar 

  19. S.M. Fall, Q. Zhang, Astrophys. J. 561(2), 751 (2001). https://doi.org/10.1086/323358

    Article  ADS  Google Scholar 

  20. V.C. Rubin, J. Ford, W. Kent, Astrophys. J. 159, 379 (1970). https://doi.org/10.1086/150317

    Article  ADS  Google Scholar 

  21. Y. Sofue, V. Rubin, Annu. Rev. Astron. Astrophys. 39, 137 (2001). https://doi.org/10.1146/annurev.astro.39.1.137

    Article  ADS  Google Scholar 

  22. W. Forman, C. Jones, W. Tucker, Astrophys. J. 293, 102 (1985). https://doi.org/10.1086/163218

    Article  ADS  Google Scholar 

  23. P.J. Humphrey, D.A. Buote, F. Gastaldello, L. Zappacosta, J.S. Bullock, F. Brighenti, W.G. Mathews, Astrophys. J. 646(2), 899 (2006). https://doi.org/10.1086/505019

    Article  ADS  Google Scholar 

  24. R. Mandelbaum, C.M. Hirata, U. Seljak, J. Guzik, N. Padmanabhan, C. Blake, M.R. Blanton, R. Lupton, J. Brinkmann, Mon. Not. R. Astron. Soc. 361(4), 1287 (2005). https://doi.org/10.1111/j.1365-2966.2005.09282.x

    Article  ADS  Google Scholar 

  25. M. Cacciato, F.C. van den Bosch, S. More, R. Li, H.J. Mo, X. Yang, Mon. Not. R. Astron. Soc. 394(2), 929 (2009). https://doi.org/10.1111/j.1365-2966.2008.14362.x

    Article  ADS  Google Scholar 

  26. J. Strader, A.J. Romanowsky, J.P. Brodie, L.R. Spitler, M.A. Beasley, J.A. Arnold, N. Tamura, R.M. Sharples, N. Arimoto, Astrophys. J. Suppl. Ser. 197(2), 33 (2011). https://doi.org/10.1088/0067-0049/197/2/33

    Article  ADS  Google Scholar 

  27. J.A. Arnold, A.J. Romanowsky, J.P. Brodie, D.A. Forbes, J. Strader, L.R. Spitler, C. Foster, C. Blom, S.S. Kartha, N. Pastorello, V. Pota, C. Usher, K.A. Woodley, Astrophys. J. 791(2), 80 (2014). https://doi.org/10.1088/0004-637X/791/2/80

    Article  ADS  Google Scholar 

  28. B. Moore, Astrophys. J. Lett. 461, L13 (1996). https://doi.org/10.1086/309998

    Article  ADS  Google Scholar 

  29. B. Willman, J. Strader, Astron. J. 144(3), 76 (2012). https://doi.org/10.1088/0004-6256/144/3/76

    Article  ADS  Google Scholar 

  30. P.J.E. Peebles, Astrophys. J. 277, 470 (1984). https://doi.org/10.1086/161714

    Article  ADS  Google Scholar 

  31. P. Madau, A. Lupi, J. Diemand, A. Burkert, D.N.C. Lin (2019). e-prints arXiv:1905.08951

    Google Scholar 

  32. A.D. Mackey, M.A. Beasley, R. Leaman, Mon. Not. R. Astron. Soc. 460(1), L114 (2016). https://doi.org/10.1093/MNRASl/slw076

    Article  ADS  Google Scholar 

  33. E.W. Peng, H.C. Ferguson, P. Goudfrooij, D. Hammer, J.R. Lucey, R.O. Marzke, T.H. Puzia, D. Carter, M. Balcells, T. Bridges, K. Chiboucas, C. del Burgo, A.W. Graham, R. Guzmán, M.J. Hudson, A. Matković, D. Merritt, B.W. Miller, M. Mouhcine, S. Phillipps, R. Sharples, R.J. Smith, B. Tully, G. Verdoes Kleijn, Astrophys. J. 730(1), 23 (2011). https://doi.org/10.1088/0004-637X/730/1/23

    Article  ADS  Google Scholar 

  34. B.G. Elmegreen, Y.N. Efremov, Astrophys. J. 480(1), 235 (1997). https://doi.org/10.1086/303966

    Article  ADS  Google Scholar 

  35. J.M.D. Kruijssen, Mon. Not. R. Astron. Soc. 454(2), 1658 (2015). https://doi.org/10.1093/MNRAS/stv2026

    Article  ADS  Google Scholar 

  36. B. Chaboyer, P. Demarque, P.J. Kernan, L.M. Krauss, A. Sarajedini, Mon. Not. R. Astron. Soc. 283(2), 683 (1996). https://doi.org/10.1093/MNRAS/283.2.683

    Article  ADS  Google Scholar 

  37. D.A. VandenBerg, K. Brogaard, R. Leaman, L. Casagrand e, Astrophys. J. 775(2), 134 (2013). https://doi.org/10.1088/0004-637X/775/2/134

  38. E. Vasiliev, Mon. Not. R. Astron. Soc. 484(2), 2832 (2019). https://doi.org/10.1093/MNRAS/stz171

    Article  ADS  Google Scholar 

  39. L.L. Watkins, R.P. van der Marel, S.T. Sohn, N.W. Evans, Astrophys. J. 873(2), 118 (2019). https://doi.org/10.3847/1538-4357/ab089f

    Article  ADS  Google Scholar 

  40. A. Vazdekis, P. Sánchez-Blázquez, J. Falcón-Barroso, A.J. Cenarro, M.A. Beasley, N. Cardiel, J. Gorgas, R.F. Peletier, Mon. Not. R. Astron. Soc. 404(4), 1639 (2010). https://doi.org/10.1111/j.1365-2966.2010.16407.x

    ADS  Google Scholar 

  41. G. Bruzual, S. Charlot, Mon. Not. R. Astron. Soc. 344(4), 1000 (2003). https://doi.org/10.1046/j.1365-8711.2003.06897.x

    Article  ADS  Google Scholar 

  42. C. Maraston, Mon. Not. R. Astron. Soc. 362(3), 799 (2005). https://doi.org/10.1111/j.1365-2966.2005.09270.x

    Article  ADS  Google Scholar 

  43. R.P. Schiavon, Astrophys. J. Suppl. Ser. 171(1), 146 (2007). https://doi.org/10.1086/511753

    Article  ADS  Google Scholar 

  44. C. Conroy, Annu. Rev. Astron. Astrophys. 51(1), 393 (2013). https://doi.org/10.1146/annurev-astro-082812-141017

    Article  ADS  Google Scholar 

  45. A.J. Cenarro, M.A. Beasley, J. Strader, J.P. Brodie, D.A. Forbes, Astron. J. 134(1), 391 (2007). https://doi.org/10.1086/518504

    Article  ADS  Google Scholar 

  46. B.K. Gibson, D.S. Madgwick, L.A. Jones, G.S. Da Costa, J.E. Norris, Astron. J. 118(3), 1268 (1999). https://doi.org/10.1086/301013

    Article  ADS  Google Scholar 

  47. A. Vazdekis, M. Salaris, N. Arimoto, J.A. Rose, Astrophys. J. 549(1), 274 (2001). https://doi.org/10.1086/319088

    Article  ADS  Google Scholar 

  48. G. Michaud, G. Alecian, J. Richer, Atomic Diffusion in Stars (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-19854-5

    Book  Google Scholar 

  49. J. Binney, L.K. Wong, Mon. Not. R. Astron. Soc. 467(2), 2446 (2017). https://doi.org/10.1093/MNRAS/stx234

    ADS  Google Scholar 

  50. D. Massari, H.H. Koppelman, A. Helmi, Astron. Astrophys. 630, L4 (2019). https://doi.org/10.1051/0004-6361/201936135

    Article  ADS  Google Scholar 

  51. A. Marín-Franch, A. Aparicio, G. Piotto, A. Rosenberg, B. Chaboyer, A. Sarajedini, M. Siegel, J. Anderson, L.R. Bedin, A. Dotter, M. Hempel, I. King, S. Majewski, A.P. Milone, N. Paust, I.N. Reid, Astrophys. J. 694(2), 1498 (2009). https://doi.org/10.1088/0004-637X/694/2/1498

    Article  ADS  Google Scholar 

  52. R. Leaman, D.A. VandenBerg, J.T. Mendel, Mon. Not. R. Astron. Soc. 436(1), 122 (2013). https://doi.org/10.1093/MNRAS/stt1540

    Article  ADS  Google Scholar 

  53. M.A. Norris, K. Gebhardt, R.M. Sharples, F.R. Faifer, T. Bridges, D.A. Forbes, J.C. Forte, S.E. Zepf, M.A. Beasley, D.A. Hanes, R. Proctor, S.J. Kannappan, Mon. Not. R. Astron. Soc. 421(2), 1485 (2012). https://doi.org/10.1111/j.1365-2966.2012.20417.x

    Article  ADS  Google Scholar 

  54. C.I. Johnson, C.A. Pilachowski, R. Michael Rich, J.P. Fulbright, Astrophys. J. 698(2), 2048 (2009). https://doi.org/10.1088/0004-637X/698/2/2048

    Article  ADS  Google Scholar 

  55. K.C. Freeman, Globular Clusters and Nucleated Dwarf Ellipticals. Astronomical Society of the Pacific Conference Series, vol. 48 (1993), p. 608

    ADS  Google Scholar 

  56. J. Hughes, G. Wallerstein, Astron. J. 119(3), 1225 (2000). https://doi.org/10.1086/301241

    Article  ADS  Google Scholar 

  57. K. Bekki, K.C. Freeman, Mon. Not. R. Astron. Soc. 346(2), L11 (2003). https://doi.org/10.1046/j.1365-2966.2003.07275.x

    Article  ADS  Google Scholar 

  58. A.F. Marino, C. Sneden, R.P. Kraft, G. Wallerstein, J.E. Norris, G. Da Costa, A.P. Milone, I.I. Ivans, G. Gonzalez, J.P. Fulbright, M. Hilker, G. Piotto, M. Zoccali, P.B. Stetson, Astron. Astrophys. 532, A8 (2011). https://doi.org/10.1051/0004-6361/201116546

    Article  Google Scholar 

  59. E. Carretta, A. Bragaglia, R.G. Gratton, S. Lucatello, M. Bellazzini, G. Catanzaro, F. Leone, Y. Momany, G. Piotto, V. D’Orazi, Astron. Astrophys. 520, A95 (2010). https://doi.org/10.1051/0004-6361/201014924

    Article  ADS  Google Scholar 

  60. S.L. Martell, E.K. Grebel, Astron. Astrophys. 519, A14 (2010). https://doi.org/10.1051/0004-6361/201014135

    Article  ADS  Google Scholar 

  61. B. Tang, C. Liu, J.G. Fernández-Trincado, D. Geisler, J. Shi, O. Zamora, G. Worthey, E. Moreno, Astrophys. J. 871(1), 58 (2019). https://doi.org/10.3847/1538-4357/aaf6b1

    Article  ADS  Google Scholar 

  62. M. Fukugita, C.J. Hogan, P.J.E. Peebles, Astrophys. J. 503(2), 518 (1998). https://doi.org/10.1086/306025

    Article  ADS  Google Scholar 

  63. S.C. Trager, S.M. Faber, G. Worthey, J.J. González, Astron. J. 120(1), 165 (2000). https://doi.org/10.1086/301442

    Article  ADS  Google Scholar 

  64. F. La Barbera, I. Ferreras, A. Vazdekis, I.G. de la Rosa, R.R. de Carvalho, M. Trevisan, J. Falcón-Barroso, E. Ricciardelli, Mon. Not. R. Astron. Soc. 433(4), 3017 (2013). https://doi.org/10.1093/MNRAS/stt943

    Article  ADS  Google Scholar 

  65. S.E. Zepf, K.M. Ashman, Mon. Not. R. Astron. Soc. 264, 611 (1993). https://doi.org/10.1093/MNRAS/264.3.611

    Article  ADS  Google Scholar 

  66. D. Geisler, M.G. Lee, E. Kim, Astron. J. 111, 1529 (1996). https://doi.org/10.1086/117894

    Article  ADS  Google Scholar 

  67. A. Kundu, B.C. Whitmore, Astron. J. 121(6), 2950 (2001). https://doi.org/10.1086/321073

    Article  ADS  Google Scholar 

  68. E.W. Peng, A. Jordán, P. Côté, J.P. Blakeslee, L. Ferrarese, S. Mei, M.J. West, D. Merritt, M. Milosavljević, J.L. Tonry, Astrophys. J. 639(1), 95 (2006). https://doi.org/10.1086/498210

    Article  ADS  Google Scholar 

  69. W.E. Harris, S.M. Ciccone, G.M. Eadie, O.Y. Gnedin, D. Geisler, B. Rothberg, J. Bailin, Astrophys. J. 835(1), 101 (2017). https://doi.org/10.3847/1538-4357/835/1/101

    Article  ADS  Google Scholar 

  70. J. Strader, M.A. Beasley, J.P. Brodie, Astron. J. 133(5), 2015 (2007). https://doi.org/10.1086/512770

    Article  ADS  Google Scholar 

  71. M.A. Beasley, T. Bridges, E. Peng, W.E. Harris, G.L.H. Harris, D.A. Forbes, G. Mackie, Mon. Not. R. Astron. Soc. 386(3), 1443 (2008). https://doi.org/10.1111/j.1365-2966.2008.13123.x

    Article  ADS  Google Scholar 

  72. A. Alves-Brito, G.K.T. Hau, D.A. Forbes, L.R. Spitler, J. Strader, J.P. Brodie, K.L. Rhode, Mon. Not. R. Astron. Soc. 417(3), 1823 (2011). https://doi.org/10.1111/j.1365-2966.2011.19368.x

    Article  ADS  Google Scholar 

  73. C. Usher, D.A. Forbes, J.P. Brodie, C. Foster, L.R. Spitler, J.A. Arnold, A.J. Romanowsky, J. Strader, V. Pota, Mon. Not. R. Astron. Soc. 426(2), 1475 (2012). https://doi.org/10.1111/j.1365-2966.2012.21801.x

    Article  ADS  Google Scholar 

  74. S.J. Yoon, S.K. Yi, Y.W. Lee, Science 311(5764), 1129 (2006). https://doi.org/10.1126/science.1122294

    Article  ADS  Google Scholar 

  75. M. Powalka, T.H. Puzia, A. Lançon, E.W. Peng, F. Schönebeck, K. Alamo-Martínez, S. Ángel, J.P. Blakeslee, P. Côté, J.C. Cuilland re, P.A. Duc, P. Durrell, L. Ferrarese, E.K. Grebel, P. Guhathakurta, S.D.J. Gwyn, H. Kuntschner, S. Lim, C. Liu, M. Lyubenova, J.C. Mihos, R.P. Muñoz, Y. Ordenes-Briceño, J. Roediger, R. Sánchez-Janssen, C. Spengler, E. Toloba, H. Zhang, Astrophys. J. Lett. 829(1), L5 (2016). https://doi.org/10.3847/2041-8205/829/1/L5

  76. N. Caldwell, R. Schiavon, H. Morrison, J.A. Rose, P. Harding, Astron. J. 141(2), 61 (2011). https://doi.org/10.1088/0004-6256/141/2/61

    Article  ADS  Google Scholar 

  77. A.W. McConnachie, M.J. Irwin, R.A. Ibata, J. Dubinski, L.M. Widrow, N.F. Martin, P. Côté, A.L. Dotter, J.F. Navarro, A.M.N. Ferguson, T.H. Puzia, G.F. Lewis, A. Babul, P. Barmby, O. Bienaymé, S.C. Chapman, R. Cockcroft, M.L.M. Collins, M.A. Fardal, W.E. Harris, A. Huxor, A.D. Mackey, J. Peñarrubia, R.M. Rich, H.B. Richer, A. Siebert, N. Tanvir, D. Valls-Gabaud, K.A. Venn, Nature 461(7260), 66 (2009). https://doi.org/10.1038/nature08327

    Article  ADS  Google Scholar 

  78. K.A.G. Olsen, B.W. Miller, N.B. Suntzeff, R.A. Schommer, J. Bright, Astron. J. 127(5), 2674 (2004). https://doi.org/10.1086/383297

    Article  ADS  Google Scholar 

  79. R.A. González-Lópezlira, Y.D. Mayya, L. Loinard, K. Álamo-Martínez, G. Heald, I.Y. Georgiev, Y. Órdenes-Briceño, A. Lançon, M.A. Lara-López, L. Lomelí-Núñez, G. Bruzual, T.H. Puzia, Astrophys. J. 876(1), 39 (2019). https://doi.org/10.3847/1538-4357/ab113a

    Article  ADS  Google Scholar 

  80. D.A. Forbes, J.I. Read, M. Gieles, M.L.M. Collins, Mon. Not. R. Astron. Soc. 481(4), 5592 (2018). https://doi.org/10.1093/MNRAS/sty2584

    Article  ADS  Google Scholar 

  81. K.A.G. Olsen, P.W. Hodge, M. Mateo, E.W. Olszewski, R.A. Schommer, N.B. Suntzeff, A.R. Walker, Mon. Not. R. Astron. Soc. 300(3), 665 (1998). https://doi.org/10.1046/j.1365-8711.1998.01860.x

    Article  ADS  Google Scholar 

  82. A.E. Piatti, E.J. Alfaro, T. Cantat-Gaudin, Mon. Not. R. Astron. Soc. 484(1), L19 (2019). https://doi.org/10.1093/MNRASl/sly240

    Article  ADS  Google Scholar 

  83. A.A. Cole, D.R. Weisz, E.D. Skillman, R. Leaman, B.F. Williams, A.E. Dolphin, L.C. Johnson, A.W. McConnachie, M. Boylan-Kolchin, J. Dalcanton, F. Governato, P. Madau, S. Shen, M. Vogelsberger, Astrophys. J. 837(1), 54 (2017). https://doi.org/10.3847/1538-4357/aa5df6

    Article  ADS  Google Scholar 

  84. D.R. Cole, W. Dehnen, J.I. Read, M.I. Wilkinson, Mon. Not. R. Astron. Soc. 426(1), 601 (2012). https://doi.org/10.1111/j.1365-2966.2012.21885.x

    Article  ADS  Google Scholar 

  85. M.D.A. Orkney, J.I. Read, J.A. Petts, M. Gieles, Mon. Not. R. Astron. Soc. 488(3), 2977 (2019). https://doi.org/10.1093/Mon.Not.R.Astron.Soc./stz1625

    Article  ADS  Google Scholar 

  86. P.G. van Dokkum, R. Abraham, A. Merritt, J. Zhang, M. Geha, C. Conroy, Astrophys. J. Lett. 798(2), L45 (2015). https://doi.org/10.1088/2041-8205/798/2/L45

    Article  ADS  Google Scholar 

  87. M.A. Beasley, A.J. Romanowsky, V. Pota, I.M. Navarro, D. Martinez Delgado, F. Neyer, A.L. Deich, Astrophys. J. Lett. 819(2), L20 (2016). https://doi.org/10.3847/2041-8205/819/2/L20

    Article  ADS  Google Scholar 

  88. B. Moore, G. Lake, N. Katz, Astrophys. J. 495(1), 139 (1998). https://doi.org/10.1086/305264

    Article  ADS  Google Scholar 

  89. R. Smith, R. Sánchez-Janssen, M.A. Beasley, G.N. Cand lish, B.K. Gibson, T.H. Puzia, J. Janz, A. Knebe, J.A.L. Aguerri, T. Lisker, G. Hensler, M. Fellhauer, L. Ferrarese, S.K. Yi, Mon. Not. R. Astron. Soc. 454(3), 2502 (2015). https://doi.org/10.1093/MNRAS/stv2082

  90. R. Sánchez-Janssen, J.A.L. Aguerri, Mon. Not. R. Astron. Soc. 424(4), 2614 (2012). https://doi.org/10.1111/j.1365-2966.2012.21301.x

    Article  ADS  Google Scholar 

  91. S.E. Zepf, M.A. Beasley, T.J. Bridges, D.A. Hanes, R.M. Sharples, K.M. Ashman, D. Geisler, Astron. J. 120(6), 2928 (2000). https://doi.org/10.1086/316850

    Article  ADS  Google Scholar 

  92. P. Côté, D.E. McLaughlin, D.A. Hanes, T.J. Bridges, D. Geisler, D. Merritt, J.E. Hesser, G.L.H. Harris, M.G. Lee, Astrophys. J. 559(2), 828 (2001). https://doi.org/10.1086/322347

    Article  ADS  Google Scholar 

  93. L. Zhu, R.J. Long, S. Mao, E.W. Peng, C. Liu, N. Caldwell, B. Li, J.P. Blakeslee, P. Côté, J.C. Cuilland re, P. Durrell, E. Emsellem, L. Ferrarese, S. Gwyn, A. Jordán, A. Lançon, S. Mei, R. Muñoz, T. Puzia, Astrophys. J. 792(1), 59 (2014). https://doi.org/10.1088/0004-637X/792/1/59

  94. A.B. Alabi, D.A. Forbes, A.J. Romanowsky, J.P. Brodie, J. Strader, J. Janz, C. Usher, L.R. Spitler, S. Bellstedt, A. Ferré-Mateu, Mon. Not. R. Astron. Soc. 468(4), 3949 (2017). https://doi.org/10.1093/MNRAS/stx678

    Article  ADS  Google Scholar 

  95. A.J. Romanowsky, J. Strader, L.R. Spitler, R. Johnson, J.P. Brodie, D.A. Forbes, T. Ponman, Astron. J. 137(6), 4956 (2009). https://doi.org/10.1088/0004-6256/137/6/4956

    Article  ADS  Google Scholar 

  96. Y. Schuberth, T. Richtler, M. Hilker, B. Dirsch, L.P. Bassino, A.J. Romanowsky, L. Infante, Astron. Astrophys. 513, A52 (2010). https://doi.org/10.1051/0004-6361/200912482

    Article  ADS  Google Scholar 

  97. V. Pota, D.A. Forbes, A.J. Romanowsky, J.P. Brodie, L.R. Spitler, J. Strader, C. Foster, J.A. Arnold, A. Benson, C. Blom, J.R. Hargis, K.L. Rhode, C. Usher, Mon. Not. R. Astron. Soc. 428(1), 389 (2013). https://doi.org/10.1093/MNRAS/sts029

    Article  ADS  Google Scholar 

  98. W.E. Harris, S. van den Bergh, Astron. J. 86, 1627 (1981). https://doi.org/10.1086/113047

    Article  ADS  Google Scholar 

  99. A. Jordán, D.E. McLaughlin, P. Côté, L. Ferrarese, E.W. Peng, S. Mei, D. Villegas, D. Merritt, J.L. Tonry, M.J. West, Astrophys. J. Suppl. Ser. 171(1), 101 (2007). https://doi.org/10.1086/516840

    Article  ADS  Google Scholar 

  100. M.J. Hudson, G.L. Harris, W.E. Harris, Astrophys. J. Lett. 787(1), L5 (2014). https://doi.org/10.1088/2041-8205/787/1/L5

    Article  ADS  Google Scholar 

  101. K. El-Badry, E. Quataert, D.R. Weisz, N. Choksi, M. Boylan-Kolchin, Mon. Not. R. Astron. Soc. 482(4), 4528 (2019). https://doi.org/10.1093/MNRAS/sty3007

    Article  ADS  Google Scholar 

  102. D.A. Forbes, Mon. Not. R. Astron. Soc. 472(1), L104 (2017). https://doi.org/10.1093/MNRASl/slx148

    Article  ADS  Google Scholar 

  103. M.J. Hudson, B. Robison, Mon. Not. R. Astron. Soc. 477(3), 3869 (2018). https://doi.org/10.1093/mnras/sty844

    Article  ADS  Google Scholar 

  104. I. Damjanov, P.J. McCarthy, R.G. Abraham, K. Glazebrook, H. Yan, E. Mentuch, D. Le Borgne, S. Savaglio, D. Crampton, R. Murowinski, S. Juneau, R.G. Carlberg, I. Jørgensen, K. Roth, H.W. Chen, R.O. Marzke, Astrophys. J. 695(1), 101 (2009). https://doi.org/10.1088/0004-637X/695/1/101

    Article  ADS  Google Scholar 

  105. J. Strader, J.P. Brodie, A.J. Cenarro, M.A. Beasley, D.A. Forbes, Astron. J. 130(4), 1315 (2005). https://doi.org/10.1086/432717

    Article  ADS  Google Scholar 

  106. C.A. Tremonti, T.M. Heckman, G. Kauffmann, J. Brinchmann, S. Charlot, S.D.M. White, M. Seibert, E.W. Peng, D.J. Schlegel, A. Uomoto, M. Fukugita, J. Brinkmann, Astrophys. J. 613(2), 898 (2004). https://doi.org/10.1086/423264

    Article  ADS  Google Scholar 

  107. E.N. Kirby, J.G. Cohen, P. Guhathakurta, L. Cheng, J.S. Bullock, A. Gallazzi, Astrophys. J. 779(2), 102 (2013). https://doi.org/10.1088/0004-637X/779/2/102

    Article  ADS  Google Scholar 

  108. M.A. Beasley, R. Leaman, C. Gallart, S.S. Larsen, G. Battaglia, M. Monelli, M.H. Pedreros, Mon. Not. R. Astron. Soc. 487(2), 1986 (2019). https://doi.org/10.1093/MNRAS/stz1349

    Article  ADS  Google Scholar 

  109. S.C. Keller, M.S. Bessell, A. Frebel, A.R. Casey, M. Asplund, H.R. Jacobson, K. Lind, J.E. Norris, D. Yong, A. Heger, Z. Magic, G.S. da Costa, B.P. Schmidt, P. Tisserand, Nature 506(7489), 463 (2014). https://doi.org/10.1038/nature12990

    Article  ADS  Google Scholar 

  110. J.M.D. Kruijssen, Mon. Not. R. Astron. Soc. 486(1), L20 (2019). https://doi.org/10.1093/MNRASl/slz052

    Article  ADS  Google Scholar 

  111. A. Gallazzi, S. Charlot, J. Brinchmann, S.D.M. White, C.A. Tremonti, Mon. Not. R. Astron. Soc. 362(1), 41 (2005). https://doi.org/10.1111/j.1365-2966.2005.09321.x

    Article  ADS  Google Scholar 

  112. I. Martín-Navarro, A. Vazdekis, J. Falcón-Barroso, F. La Barbera, A. Yıldırım, G. van de Ven, Mon. Not. R. Astron. Soc. 475(3), 3700 (2018). https://doi.org/10.1093/MNRAS/stx3346

    Article  ADS  Google Scholar 

  113. P. Surma, R. Bender, Astron. Astrophys. 298, 405 (1995)

    ADS  Google Scholar 

  114. R.L. Davies, H. Kuntschner, E. Emsellem, R. Bacon, M. Bureau, C.M. Carollo, Y. Copin, B.W. Miller, G. Monnet, R.F. Peletier, E.K. Verolme, P.T. de Zeeuw, Astrophys. J. Lett. 548(1), L33 (2001). https://doi.org/10.1086/318930

    Article  ADS  Google Scholar 

  115. T.H. Puzia, S.E. Zepf, M. Kissler-Patig, M. Hilker, D. Minniti, P. Goudfrooij, Astron. Astrophys. 391, 453 (2002). https://doi.org/10.1051/0004-6361:20020835

    Article  ADS  Google Scholar 

  116. S.S. Larsen, J.P. Brodie, M.A. Beasley, D.A. Forbes, M. Kissler-Patig, H. Kuntschner, T.H. Puzia, Astrophys. J. 585(2), 767 (2003). https://doi.org/10.1086/346219

    Article  ADS  Google Scholar 

  117. C. Blom, L.R. Spitler, D.A. Forbes, Mon. Not. R. Astron. Soc. 420(1), 37 (2012). https://doi.org/10.1111/j.1365-2966.2011.19963.x

    Article  ADS  Google Scholar 

  118. A.L. Chies-Santos, S.S. Larsen, M. Kissler-Patig, Mon. Not. R. Astron. Soc. 427(3), 2349 (2012). https://doi.org/10.1111/j.1365-2966.2012.22135.x

    Article  ADS  Google Scholar 

  119. C. Blom, D.A. Forbes, C. Foster, A.J. Romanowsky, J.P. Brodie, Mon. Not. R. Astron. Soc. 439(3), 2420 (2014). https://doi.org/10.1093/MNRAS/stu095

    Article  ADS  Google Scholar 

  120. I. Trujillo, A. Ferré-Mateu, M. Balcells, A. Vazdekis, P. Sánchez-Blázquez, Astrophys. J. Lett. 780(2), L20 (2014). https://doi.org/10.1088/2041-8205/780/2/L20

    Article  ADS  Google Scholar 

  121. M.A. Beasley, I. Trujillo, R. Leaman, M. Montes, Nature 555(7697), 483 (2018). https://doi.org/10.1038/nature25756

    Article  ADS  Google Scholar 

  122. P. van Dokkum, S. Danieli, Y. Cohen, A. Merritt, A.J. Romanowsky, R. Abraham, J. Brodie, C. Conroy, D. Lokhorst, L. Mowla, E. O’Sullivan, J. Zhang, Nature 555(7698), 629 (2018). https://doi.org/10.1038/nature25767

    Article  ADS  Google Scholar 

  123. I. Trujillo, M.A. Beasley, A. Borlaff, E.R. Carrasco, A. Di Cintio, M. Filho, M. Monelli, M. Montes, J. Román, T. Ruiz-Lara, J. Sánchez Almeida, D. Valls-Gabaud, A. Vazdekis, Mon. Not. R. Astron. Soc. 486(1), 1192 (2019). https://doi.org/10.1093/mnras/stz771

    Article  ADS  Google Scholar 

  124. L. Searle, R. Zinn, Astrophys. J. 225, 357 (1978). https://doi.org/10.1086/156499

    Article  ADS  Google Scholar 

  125. O.J. Eggen, D. Lynden-Bell, A.R. Sandage, Astrophys. J. 136, 748 (1962). https://doi.org/10.1086/147433

    Article  ADS  Google Scholar 

  126. K.M. Ashman, S.E. Zepf, Astrophys. J. 384, 50 (1992). https://doi.org/10.1086/170850

    Article  ADS  Google Scholar 

  127. P. Côté, R.O. Marzke, M.J. West, Astrophys. J. 501(2), 554 (1998). https://doi.org/10.1086/305838

    Article  ADS  Google Scholar 

  128. M.A. Beasley, C.M. Baugh, D.A. Forbes, R.M. Sharples, C.S. Frenk, Mon. Not. R. Astron. Soc. 333(2), 383 (2002). https://doi.org/10.1046/j.1365-8711.2002.05402.x

    Article  ADS  Google Scholar 

  129. C. Tonini, Astrophys. J. 762(1), 39 (2013). https://doi.org/10.1088/0004-637X/762/1/39

    Article  ADS  Google Scholar 

  130. N. Choksi, O.Y. Gnedin, Mon. Not. R. Astron. Soc. 488(4), 5409 (2019). https://doi.org/10.1093/MNRAS/stz2097

    Article  ADS  Google Scholar 

  131. A.V. Kravtsov, O.Y. Gnedin, Astrophys. J. 623(2), 650 (2005). https://doi.org/10.1086/428636

    Article  ADS  Google Scholar 

  132. J. Pfeffer, J.M.D. Kruijssen, R.A. Crain, N. Bastian, Mon. Not. R. Astron. Soc. 475(4), 4309 (2018). https://doi.org/10.1093/MNRAS/stx3124

    Article  ADS  Google Scholar 

  133. N. Mandelker, P.G. van Dokkum, J.P. Brodie, F.C. van den Bosch, D. Ceverino, Astrophys. J. 861(2), 148 (2018). https://doi.org/10.3847/1538-4357/aaca98

    Article  ADS  Google Scholar 

  134. J.h. Kim, X. Ma, M.Y. Grudić, P.F. Hopkins, C.C. Hayward, A. Wetzel, C.A. Faucher-Giguère, D. Kereš, S. Garrison-Kimmel, N. Murray, Mon. Not. R. Astron. Soc. 474(3), 4232 (2018). https://doi.org/10.1093/MNRAS/stx2994

  135. X. Ma, M.Y. Grudić, E. Quataert, P.F. Hopkins, C.A. Faucher-Giguère, M. Boylan-Kolchin, A. Wetzel, J.h. Kim, N. Murray, D. Kereš (2019). e-prints arXiv:1906.11261

    Google Scholar 

  136. E. Vanzella, F. Calura, M. Meneghetti, M. Castellano, G.B. Caminha, A. Mercurio, G. Cupani, P. Rosati, C. Grillo, R. Gilli, M. Mignoli, G. Fiorentino, C. Arcidiacono, M. Lombini, F. Cortecchia, Mon. Not. R. Astron. Soc. 483(3), 3618 (2019). https://doi.org/10.1093/MNRAS/sty3311

    Article  ADS  Google Scholar 

  137. A. Renzini, Mon. Not. R. Astron. Soc. 469(1), L63 (2017). https://doi.org/10.1093/MNRASl/slx057

    Article  ADS  Google Scholar 

  138. L. Pozzetti, C. Maraston, A. Renzini, Mon. Not. R. Astron. Soc. 485(4), 5861 (2019). https://doi.org/10.1093/MNRAS/stz785

    Article  ADS  Google Scholar 

  139. E. Vanzella, F. Calura, M. Meneghetti, A. Mercurio, M. Castellano, G.B. Caminha, I. Balestra, P. Rosati, P. Tozzi, S. De Barros, A. Grazian, A. D’Ercole, L. Ciotti, K. Caputi, C. Grillo, E. Merlin, L. Pentericci, A. Fontana, S. Cristiani, D. Coe, Mon. Not. R. Astron. Soc. 467(4), 4304 (2017). https://doi.org/10.1093/MNRAS/stx351

    Article  ADS  Google Scholar 

  140. R.J. Bouwens, G.D. Illingworth, P.A. Oesch, M. Maseda, B. Ribeiro, M. Stefanon, D. Lam (2017). e-prints arXiv:1711.02090

    Google Scholar 

  141. R. Barkana, A. Loeb, Phys. Rep. 349(2), 125 (2001). https://doi.org/10.1016/S0370-1573(01)00019-9

    Article  ADS  Google Scholar 

  142. M. Boylan-Kolchin, Mon. Not. R. Astron. Soc. 479(1), 332 (2018). https://doi.org/10.1093/MNRAS/sty1490

    Article  ADS  Google Scholar 

  143. H. Katz, M. Ricotti, Mon. Not. R. Astron. Soc. 444(3), 2377 (2014). https://doi.org/10.1093/MNRAS/stu1489

    Article  ADS  Google Scholar 

  144. L. Oser, J.P. Ostriker, T. Naab, P.H. Johansson, A. Burkert, Astrophys. J. 725(2), 2312 (2010). https://doi.org/10.1088/0004-637X/725/2/2312

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Núria Salvador Rusiñol for proof-reading and useful feedback on the text. This work has been supported through the RAVET project by the grant AYA2016-77237-C3-1-P from the Spanish Ministry of Science, Innovation and Universities (MCIU) and through the IAC project TRACES which is partially supported through the state budget and the regional budget of the Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Beasley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beasley, M.A. (2020). Globular Cluster Systems and Galaxy Formation. In: Kabáth, P., Jones, D., Skarka, M. (eds) Reviews in Frontiers of Modern Astrophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38509-5_9

Download citation

Publish with us

Policies and ethics