Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iterative Differential Characteristic of TRIFLE-BC

  • Conference paper
  • First Online:
Selected Areas in Cryptography – SAC 2019 (SAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11959))

Included in the following conference series:

Abstract

TRIFLE is a Round 1 candidate of the NIST Lightweight Cryptography Standardization process. In this paper, we present an interesting 1-round iterative differential characteristic of the underlying block cipher TRIFLE-BC used in TRIFLE, which holds with probability of \(2^{-3}\). Consequently, it allows to mount distinguishing attack on TRIFLE-BC for up to 43 (out of 50) rounds with data complexity \(2^{124}\) and time complexity \(2^{124}\). Most importantly, with such an iterative differential characteristic, the forgery attack on TRIFLE can reach up to 21 (out of 50) rounds with data complexity \(2^{63}\) and time complexity \(2^{63}\). Finally, to achieve key recovery attack on reduced TRIFLE, we construct a differential characteristic covering three blocks by carefully choosing the positions of the iterative differential characteristic. As a result, we can mount key-recovery attack on TRIFLE for up to 11 rounds with data complexity \(2^{63}\) and time complexity \(2^{104}\). Although the result in this paper cannot threaten the security margin of TRIFLE, we hope it can help further understand the security of TRIFLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with zero divisors, nearly symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017)

    Google Scholar 

  2. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17

    Chapter  Google Scholar 

  3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small present - towards reaching the limit of lightweight encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

    Chapter  Google Scholar 

  4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the internet of things. IACR Cryptol. ePrint Arch. 2015, 585 (2015)

    MATH  Google Scholar 

  5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  7. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  8. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_20

    Chapter  MATH  Google Scholar 

  9. Datta, N., Ghoshal, A., Mukhopadhyay, D., Patranabis, S., Picek, P., Sadhukhan, R.: TRIFLE (2019). https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

  10. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_16

    Chapter  Google Scholar 

  11. Eichlseder, M., Kales, D., Schofnegger, M.: Forgery attacks on FlexAE and FlexAEAD. Cryptology ePrint Archive, Report 2019/679 (2019). https://eprint.iacr.org/2019/679

    Chapter  Google Scholar 

  12. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  13. Khairallah, M.: Forgery attack on SNEIKEN. Cryptology ePrint Archive, Report 2019/408 (2019). https://eprint.iacr.org/2019/408

  14. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9

    Chapter  Google Scholar 

  15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  16. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the non-volatile key. IACR Trans. Symmetric Cryptol. 2016(2), 52–79 (2016)

    Google Scholar 

  17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5

    Chapter  MATH  Google Scholar 

  18. Perrin, L.: Probability 1 iterated differential in the SNEIK permutation. Cryptology ePrint Archive, Report 2019/374 (2019). https://eprint.iacr.org/2019/374

  19. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_7

    Chapter  Google Scholar 

  20. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_23

    Chapter  Google Scholar 

  21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  22. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  23. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  24. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks exploiting algebraic properties of superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10

    Chapter  Google Scholar 

  25. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers of SAC 2019 and the TRIFLE team for their comments. According to the discussion with TRIFLE team, they are aware of such 1-1 differential transition and therefore make such a transition through an S-box hold with probability \(2^{-3}\) rather than \(2^{-2}\). Fukang Liu is supported by Invitation Programs for Foreigner-based Researchers of the National Institute of Information and Communications Technology (NICT). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fukang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Isobe, T. (2020). Iterative Differential Characteristic of TRIFLE-BC. In: Paterson, K., Stebila, D. (eds) Selected Areas in Cryptography – SAC 2019. SAC 2019. Lecture Notes in Computer Science(), vol 11959. Springer, Cham. https://doi.org/10.1007/978-3-030-38471-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38471-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38470-8

  • Online ISBN: 978-3-030-38471-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics