Nothing Special   »   [go: up one dir, main page]

Skip to main content

Content-Aware Cubemap Projection for Panoramic Image via Deep Q-Learning

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11962))

Included in the following conference series:

Abstract

Cubemap projection (CMP) becomes a potential panoramic data format for its efficiency. However, default CMP coordinate system with fixed viewpoint may cause distortion, especially around the boundaries of each projection plane. To promote quality of panoramic images in CMP, we propose a content-awared CMP optimization method via deep Q-learning. The key of this method is to predict an angle for rotating the image in Equirectangular projection (ERP), which attempts to keep foreground objects away from the edge of each projection plane after the image is re-projected with CMP. Firstly, the panoramic image in ERP is preprocessed for obtaining a foreground pixel map. Secondly, we feed the foreground map into the proposed deep convolutional network (ConvNet) to obtain the predicted rotation angle. The model parameters are training through the deep Q-learning scheme. Experimental results show our method keep more foreground pixels in center of each projection plane than the baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ng, K.-T., Chan, S.-C., Shum, H.-Y.: Data compression and transmission aspects of panoramic videos. IEEE Trans. Circuits Syst. Video Technol. 15(1), 82–95 (2005)

    Article  Google Scholar 

  2. Grünheit, C., Smolic, A., Wiegand, T.: Efficient representation and interactive streaming of high-resolution panoramic views. In: Proceedings of the 2002 International Conference on Image Processing (ICIP), pp. 209–212 (2002)

    Google Scholar 

  3. Xiong, B., Grauman, K.: Snap angle prediction for 360\(^{\circ }\) panoramas. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_1

    Chapter  Google Scholar 

  4. Abudahab, K., et al.: Panini: pangenome neighbour identification for bacterial populations. Microbial Genomics 5(4) (2019)

    Google Scholar 

  5. Kim, Y.W., Lee, C.-R., Cho, D.-Y., Kwon, Y.H., Choi, H.-J., Yoon, K.-J.: Automatic content-aware projection for \(360^{\circ }\) videos. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4753–4761 (2017)

    Google Scholar 

  6. Tehrani, M.A., Majumder, A., Gopi, M.: Correcting perceived perspective distortions using object specific planar transformations. In: 2016 IEEE International Conference on Computational Photography (ICCP), pp. 1–10, May 2016

    Google Scholar 

  7. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  8. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning (ICML), pp. 2829–2838 (2016)

    Google Scholar 

  9. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.A.: Deterministic policy gradient algorithms. In: Proceedings of the 31th International Conference on Machine Learning (ICML), vol. 32, pp. 387–395 (2014)

    Google Scholar 

  10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  11. Xu, M., Song, Y., Wang, J., Qiao, M., Huo, L., Wang, Z.: Predicting head movement in panoramic video: a deep reinforcement learning approach. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  12. Jain, S.D., Xiong, B., Grauman, K.: Pixel objectness: learning to segment generic objects automatically in images and videos. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2018)

    Google Scholar 

  13. Su, Y.-C., Grauman, K.: Learning spherical convolution for fast features from \(360^{\circ }\) imagery. In: Advances in Neural Information Processing Systems, pp. 529–539 (2017)

    Google Scholar 

  14. Su, Y.-C., Grauman, K.: Kernel transformer networks for compact spherical convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9442–9451 (2019)

    Google Scholar 

  15. Su, Y.-C., Jayaraman, D., Grauman, K.: Pano2Vid: automatic cinematography for watching 360\(^{\circ }\) videos. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10114, pp. 154–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54190-7_10

    Chapter  Google Scholar 

  16. Su, Y.-C., Grauman, K.: Making \(360^{\circ }\) video watchable in 2D: learning videography for click free viewing. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1368–1376. IEEE (2017)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  19. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36(5), 823 (1930)

    Article  Google Scholar 

  20. Liu, T., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33(2), 353–367 (2010)

    Google Scholar 

  21. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant 31670553, Grant 61871270 and Grant 61672443), in part by the Guangdong Natural Science Foundation of China under Grant 2016A030310058, in part by the Natural Science Foundation of SZU (Grant 827000144) and in part by the National Engineering Laboratory for Big Data System Computing Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Wang, X., Zhou, Y., Zou, L., Jiang, J. (2020). Content-Aware Cubemap Projection for Panoramic Image via Deep Q-Learning. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37734-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37733-5

  • Online ISBN: 978-3-030-37734-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics