Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Preserving k-means Clustering: an Application to Driving Style Recognition

  • Conference paper
  • First Online:
Network and System Security (NSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11928))

Included in the following conference series:

Abstract

With the advent of connected vehicles, drivers will communicate personal information describing their driving style to their vehicles manufacturers, stakeholders or insurers. These information will serve to evaluate remotely vehicle state via an e-diagnostics service, to provide over-the-air update of vehicles controllers and to offer new third parties services targeting profiled drivers. An inherent problem to all the previous services is privacy. Indeed, the providers of these services will need access to sensitive data in order to propose in return an adequate service.

In this paper, we propose a privacy-preserving k-means clustering for drivers subscribed to the pay how you drive service, where vehicles insurance fees are adjusted according to driving behavior. Our proposal relies on secure multi-party computation and additive homomorphic encryption schemes to ensure the confidentiality of drivers data during clustering and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.oktal.fr/en/automotive/range-of-simulators/range-of-simulators.

  2. 2.

    Note that our protocol is not only limited to drivers clustering and can be easily generalized to cover all use-cases using k-means for clustering.

  3. 3.

    we rewrite only \({S_f}_1\) and \({S_n}_1\) for the sake of clarity.

References

  1. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)

    Google Scholar 

  2. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  3. Troncoso, C., Danezis, G., Kosta, E., Balasch, J., Preneel, B.: PriPAYD: privacy-friendly pay-as-you-drive insurance. IEEE Trans. Dependable Secure Comput. 8(5), 742–755 (2011)

    Article  Google Scholar 

  4. Kargl, F., Friedman, A., Boreli, R.: Differential privacy in intelligent transportation systems. In: Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 107–112. ACM (2013)

    Google Scholar 

  5. Rizzo, N., Sprissler, E., Hong, Y., Goel, S.: Privacy preserving driving style recognition. In: 2015 International Conference on Connected Vehicles and Expo (ICCVE), pp. 232–237. IEEE (2015)

    Google Scholar 

  6. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 205–210. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_19

    Chapter  Google Scholar 

  8. Naor, M., Pinkas, B., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2001, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 448–457 (2001)

    Google Scholar 

  9. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1

    Chapter  MATH  Google Scholar 

  10. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)

    Article  MathSciNet  Google Scholar 

  11. Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth circuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_5

    Chapter  Google Scholar 

  12. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_23

    Chapter  Google Scholar 

  13. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

    Chapter  MATH  Google Scholar 

  14. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Boudguiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omri, O.E., Boudguiga, A., Izabachene, M., Klaudel, W. (2019). Privacy-Preserving k-means Clustering: an Application to Driving Style Recognition. In: Liu, J., Huang, X. (eds) Network and System Security. NSS 2019. Lecture Notes in Computer Science(), vol 11928. Springer, Cham. https://doi.org/10.1007/978-3-030-36938-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36938-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36937-8

  • Online ISBN: 978-3-030-36938-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics