Abstract
With the advent of connected vehicles, drivers will communicate personal information describing their driving style to their vehicles manufacturers, stakeholders or insurers. These information will serve to evaluate remotely vehicle state via an e-diagnostics service, to provide over-the-air update of vehicles controllers and to offer new third parties services targeting profiled drivers. An inherent problem to all the previous services is privacy. Indeed, the providers of these services will need access to sensitive data in order to propose in return an adequate service.
In this paper, we propose a privacy-preserving k-means clustering for drivers subscribed to the pay how you drive service, where vehicles insurance fees are adjusted according to driving behavior. Our proposal relies on secure multi-party computation and additive homomorphic encryption schemes to ensure the confidentiality of drivers data during clustering and classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that our protocol is not only limited to drivers clustering and can be easily generalized to cover all use-cases using k-means for clustering.
- 3.
we rewrite only \({S_f}_1\) and \({S_n}_1\) for the sake of clarity.
References
Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Troncoso, C., Danezis, G., Kosta, E., Balasch, J., Preneel, B.: PriPAYD: privacy-friendly pay-as-you-drive insurance. IEEE Trans. Dependable Secure Comput. 8(5), 742–755 (2011)
Kargl, F., Friedman, A., Boreli, R.: Differential privacy in intelligent transportation systems. In: Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 107–112. ACM (2013)
Rizzo, N., Sprissler, E., Hong, Y., Goel, S.: Privacy preserving driving style recognition. In: 2015 International Conference on Connected Vehicles and Expo (ICCVE), pp. 232–237. IEEE (2015)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 205–210. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_19
Naor, M., Pinkas, B., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2001, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 448–457 (2001)
Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1
Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)
Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth circuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_5
Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_23
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Omri, O.E., Boudguiga, A., Izabachene, M., Klaudel, W. (2019). Privacy-Preserving k-means Clustering: an Application to Driving Style Recognition. In: Liu, J., Huang, X. (eds) Network and System Security. NSS 2019. Lecture Notes in Computer Science(), vol 11928. Springer, Cham. https://doi.org/10.1007/978-3-030-36938-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-36938-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36937-8
Online ISBN: 978-3-030-36938-5
eBook Packages: Computer ScienceComputer Science (R0)