Abstract
Automated threat object detection in X-ray images is needed urgently in baggage inspection at airports, railway stations and other public places. However, the works on object detection are still very limited to meet the needs of practical application. In this paper, we propose a modified adaptive implicit shape model (MAISM) to detect threat objects in X-ray images, in which the triangle patches are used to compute occurrence of the centroid of object instead of keypoints. This model is adaptive for object detection in images of variable scales through triangle patch matching. Experiments on three different threat objects images (razor blades, shuriken, handguns) of various scales demonstrate the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abidi, B., Zheng, Y., Gribok, A., et al.: Improving weapon detection in single energy X-ray images through pseudocoloring. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 36(6), 784–796 (2006)
Chen, Z., Zheng, Y., Abidi, B.: A combinational approach to the fusion, de-noising and enhancement of dual-energy X-ray luggage images. In: IEEE Computer Society on Computer Vision and Pattern Recognition Workshops. IEEE (2006)
Rosten, E., Porter, R., et al.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2008)
Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-ray images. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 144–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_15
Baştan, M., Yousefi, M.R., Breuel, T.M.: Visual words on baggage X-ray images. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 360–368. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23672-3_44
Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visual words. In: Proceedings International Conference on Industrial Technology, pp. 1140–1145. IEEE (2013)
Bastan, M., Byeon, W., Breuel, T.M.: Object recognition in multi-view dual energy X-ray images. In: BMVC, vol. 1, no. 2, p. 11 (2013)
Baştan, M.: Multi-view object detection in dual-energy X-ray images. Mach. Vis. Appl. 26(7-8), 1045–1060 (2015)
Kundegorski, M.E., Akcay, S., et al.: On using feature descriptors as visual words for object detection within X-ray baggage security screening. In: International Conference on Imaging for Crime Detection and Prevention (2016)
Mery, D., Svec, E., Arias, M.: Object recognition in baggage inspection using adaptive sparse representations of X-ray images. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 709–720. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29451-3_56
Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 472–482 (2016)
Akcay, S., Kundegorski, M.E., et al.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203–2215 (2018)
Akcay, S., Kundegorski, M.E., et al.: Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery. In: IEEE International Conference on Image Processing, pp. 1056–1061 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z., Lyu, S., Jin, W., Lu, Y. (2019). Modified Adaptive Implicit Shape Model for Object Detection. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-36802-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36801-2
Online ISBN: 978-3-030-36802-9
eBook Packages: Computer ScienceComputer Science (R0)