Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Accurate Lung Tumor Spotting and Segmentation for Boundary Delineation on CT Slices in a Coarse-to-Fine Framework

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1142))

Included in the following conference series:

Abstract

Label noise and class imbalance are two of the critical challenges when training image-based deep neural networks, especially in the biomedical image processing domain. Our work focuses on how to address the two challenges effectively and accurately in the task of lesion segmentation from biomedical/medical images. To address the pixel-level label noise problem, we propose an advanced transfer training and learning approach with a detailed DICOM pre-processing method. To address the tumor/non-tumor class imbalance problem, we exploit a self-adaptive fully convolutional neural network with an automated weight distribution mechanism to spot the Radiomics lung tumor regions accurately. Furthermore, an improved conditional random field method is employed to obtain sophisticated lung tumor contour delineation and segmentation. Finally, our approach has been evaluated using several well-known evaluation metrics on the Lung Tumor segmentation dataset used in the 2018 IEEE VIP-CUP Challenge. Experimental results show that our weakly supervised learning algorithm outperforms other deep models and state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pang, S., Yu, Z., Orgun, M.A.: A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Comput. Methods Programs Biomed. 140, 283–293 (2017)

    Article  Google Scholar 

  2. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  3. Ju, W., Xiang, D., Zhang, B., Wang, L., Kopriva, I., Chen, X.: Random walk and graph cut for co-segmentation of lung tumor on pet-ct images. IEEE Trans. Image Process. 24(12), 5854–5867 (2015)

    Article  MathSciNet  Google Scholar 

  4. Song, Q., et al.: Optimal co-segmentation of tumor in pet-ct images with context information. IEEE Trans. Med. Imaging 32(9), 1685–1697 (2013)

    Article  Google Scholar 

  5. Pang, S., del Coz, J.J., Yu, Z., Luaces, O., Díez, J.: Deep learning to frame objects for visual target tracking. Eng. Appl. Artif. Intell. 65, 406–420 (2017)

    Article  Google Scholar 

  6. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  7. Christ, P.F., et al.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, Mert R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Frontiers in Neuroanatomy 9, 142 (2015)

    Article  Google Scholar 

  10. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)

    Google Scholar 

  11. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Article  Google Scholar 

  12. Mohammadi, A., et al.: Lung cancer radiomics: highlights from the ieee video and image processing cup 2018 student competition [sp competitions]. IEEE Signal Process. Mag. 36(1), 164–173 (2018)

    Article  Google Scholar 

  13. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  14. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet A. Orgun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pang, S., Du, A., He, X., Díez, J., Orgun, M.A. (2019). Fast and Accurate Lung Tumor Spotting and Segmentation for Boundary Delineation on CT Slices in a Coarse-to-Fine Framework. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics