Abstract
Brain-Computer Interface (BCI) is a powerful technology that allows human beings to communicate with computers or to control devices. Owing to their convenient collection, non-invasive Electroencephalography (EEG) signals play an important role in BCI systems. Design of high-performance motion intention recognition algorithm based on EEG data under cross-subject and multi-category circumstances is a crucial challenge. Towards this purpose, a convolutional recurrent neural network is proposed. The raw EEG streaming is transformed into image sequence according to its location of the primary sensorimotor area to preserve its spatiotemporal features. A Convolutional Long Short-Term Memory (ConvLSTM) network is used to encode spatiotemporal information and generate a better representation from the obtained image sequence. The spatial features are then extracted from the output of ConvLSTM network by convolutional layer. The convolutional layer along with ConvLSTM network is capable of capturing the spatiotemporal features which enables the recognition of motion intention from the raw EEG signals. Experiments are carried out on the PhysioNet EEG motor imagery dataset to test the performance of the proposed method. It is shown that the proposed method can achieve high accuracy of 95.15%, which outperforms previous methods. Meanwhile, the proposed method can be used to design high-performance BCI systems, such as mind-controlled exoskeletons, prosthetic hands and rehabilitation robotics.
This work is supported in part by the National Key R&D Program of China (Grant 2018YFC2001700), the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB32000000), and Beijing Natural Science Foundation (Grant L172050 and 3171001).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kumar, S.U., Inbarani, H.H.: PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput. Appl. 28(11), 3239–3258 (2017)
Chowdhury, A., Raza, H., Meena, Y.K., Dutta, A., Prasad, G.: Online covariate shift detection-based adaptive brain-computer interface to trigger hand exoskeleton feedback for neuro-rehabilitation. IEEE Trans. Cogn. Dev. Syst. 10(4), 1070–1080 (2018)
Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2008)
Ang, K.K., et al.: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46(4), 310–320 (2015)
Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017)
Pattnaik, S., Dash, M., Sabut, S.: DWT-based feature extraction and classification for motor imaginary EEG signals. In: IEEE International Conference on Systems in Medicine and Biology (ICSMB), pp. 186–201. IEEE (2016)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3), 551 (2019)
Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. In: International Conference on Learning Representations (ICLR) (2016)
Stancák Jr., A., Pfurtscheller, G.: The effects of handedness and type of movement on the contralateral preponderance of \(\mu \)-rhythm desynchronisation. Electroencephalogr. Clin. Neurophysiol. 99(2), 174–182 (1996)
Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239(2–3), 65–68 (1997)
Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Wang, Z., Du, X., Wu, Q., Dong, Y.: Research on the multi-classifier features of the motor imagery EEG signals in the brain computer interface. In: Tenth International Conference on Digital Image Processing (ICDIP 2018), vol. 10806, p. 108066Z. International Society for Optics and Photonics (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fang, Z., Wang, W., Hou, ZG. (2019). Convolutional LSTM: A Deep Learning Method for Motion Intention Recognition Based on Spatiotemporal EEG Data. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-36808-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36807-4
Online ISBN: 978-3-030-36808-1
eBook Packages: Computer ScienceComputer Science (R0)