Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simple ConvNet Based on Bag of MLP-Based Local Descriptors

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1142))

Included in the following conference series:

Abstract

Deep convolutional neural network (ConvNet) is applied to versatile image recognition tasks with great success, though demanding high computation cost. Toward efficient computation, we propose a simple ConvNet architecture based on local descriptors in the bag-of-features framework. The local descriptors are formulated in a simple form of MLP and thus are efficiently computed on various ROI in a flexible manner. The proposed method is effectively trained in an end-to-end manner by reformulating the MLP descriptor into the form of deep ConvNet stacking convolution layers linearly. Through projection-based visual word encoding, the local descriptors are aggregated and fed into a classifier for image recognition tasks, which enables us to compute the network forwarding pass by matrix-vector multiplication. In the experiments on image classification, the proposed method is analyzed thoroughly, exhibiting favorable generalization performance on various tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The PASCAL Visual Object Classes Challenge 2007 (VOC2007). http://www.pascal-network.org/challenges/VOC/voc2007/index.html

  2. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: CVPR (2016)

    Google Scholar 

  3. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of transferability for a generic convnet representation. PAMI 38(9), 1790–1802 (2016)

    Article  Google Scholar 

  4. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New York (1999)

    MATH  Google Scholar 

  5. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: CVPR, pp. 3828–3836 (2015)

    Google Scholar 

  6. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report 7694, Caltech (2007)

    Google Scholar 

  7. Kawaguchi, K.: Deep learning without poor local minima. In: NIPS, pp. 586–594 (2016)

    Google Scholar 

  8. Kestur, S., Davis, J.D., Chung, E.S.: Towards a universal FPGA matrix-vector multiplication architecture. In: FCCM, pp. 9–16 (2012)

    Google Scholar 

  9. Kobayashi, T.: Dirichlet-based histogram feature transform for image classification. In: CVPR, pp. 3278–3285 (2014)

    Google Scholar 

  10. Kobayashi, T.: Analyzing filters toward efficient convnets. In: CVPR, pp. 5619–5628 (2018)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Li, L.J., Fei-Fei, L.: What, where and who? Classifying events by scene and object recognition. In: ICCV (2007)

    Google Scholar 

  14. Lin, M., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale invariant features. IJCV 60, 91–110 (2004)

    Article  Google Scholar 

  16. Mohedano, E., McGuinness, K., O’Connor, N.E., Salvador, A., Marques, F., Giro-i-Nieto, X.: Bags of local convolutional features for scalable instance search. In: ICMR, pp. 327–331 (2016)

    Google Scholar 

  17. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  18. Paulin, M., Douze, M., Harchaoui, Z., Mairal, J., Perronnin, F., Schmid, C.: Local convolutional features with unsupervised training for image retrieval. In: ICCV, pp. 91–99 (2015)

    Google Scholar 

  19. Perronnin, F., Larlus, D.: Fisher vectors meet neural networks: a hybrid classification architecture. In: CVPR, pp. 3743–3752 (2015)

    Google Scholar 

  20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 77–85 (2017)

    Google Scholar 

  21. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: CVPR, pp. 413–420 (2009)

    Google Scholar 

  22. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV 105(3), 222–245 (2013)

    Article  MathSciNet  Google Scholar 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNETV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  24. Sharan, L., Rosenholtz, R., Adelson, E.: Material perception: what can you see in a brief glance? J. Vis. 9(8), 784 (2009)

    Article  Google Scholar 

  25. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV, pp. 118–126 (2015)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  27. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. In: ACM MM (2015)

    Google Scholar 

  28. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)

    Google Scholar 

  29. Zhang, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR, pp. 6848–6856 (2018)

    Google Scholar 

  30. Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. PAMI 40(5), 1224–1244 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobayashi, T., Ide, H., Watanabe, K. (2019). Simple ConvNet Based on Bag of MLP-Based Local Descriptors. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics