Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intelligent Image Retrieval Based on Multi-swarm of Particle Swarm Optimization and Relevance Feedback

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

  • 1970 Accesses

Abstract

In recent years, Convolutional Neural Networks (CNNs) have promoted greatly the development of image retrieval, intelligent image retrieval still faces challenges. An intrinsic challenge in intelligent image retrieval exists the intention gap between the real intention of the users and the representation of users’ query, besides the well-known semantic gap. To address these problems, we propose a novel method that incorporates a relevance feedback (RF) method with an evolutionary stochastic algorithm, called multi-swarm of particle swarm optimization (MPSO), as a way to grasp the users’ perception of relevance through optimized iterative learning. One main component of our method, MPSO, can effectively prevent the retrieval system from falling into local optimal and dispose of those redundant particles, which can improve the diversity of particles. Moreover, we also present a simple but effective similarity ranking algorithm to increase retrieval speed, which can consider synthetically not only the fitness of each query point in feature space, but also the similarity of the image sequence corresponding to each query point. Extensive experiments on three publicly available datasets demonstrate that our method significantly improves the precision, recall as well as the user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

  2. 2.

    http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx.

  3. 3.

    https://www.imageclef.org/.

References

  1. Anjali, T., Rakesh, N., Akshay, K.M.P.: A novel based decision tree for content based image retrieval: an optimal classification approach. In: 2018 International Conference on Communication and Signal Processing (ICCSP), pp. 0698–0704. April 2018. https://doi.org/10.1109/ICCSP.2018.8524326

  2. Aziz, M.A.E., Ewees, A.A., Hassanien, A.E.: Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools Appl. 77(19), 26135–26172 (2018). https://doi.org/10.1007/s11042-018-5840-9

    Article  Google Scholar 

  3. Broilo, M., Rocca, P., De Natale, F.G.B.: Content-based image retrieval by a semi-supervised particle swarm optimization. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 666–671, October 2008

    Google Scholar 

  4. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002). https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  5. Djordjevic, D., Izquierdo, E.: An object- and user-driven system for semantic-based image annotation and retrieval. IEEE Trans. Circ. Syst. Video Technol. 17(3), 313–323 (2007)

    Article  Google Scholar 

  6. Grigorova, A., Natale, F.G.B.D., Dagli, C., Huang, T.S.: Content-based image retrieval by feature adaptation and relevance feedback. IEEE Trans. Multimedia 9(6), 1183–1192 (2007)

    Article  Google Scholar 

  7. Kherfi, M.L., Ziou, D.: Image retrieval based on feature weighting and relevance feedback. In: 2004 International Conference on Image Processing, 2004. ICIP 2004. vol. 1, pp. 689–692. Vol. 1 (Oct 2004). https://doi.org/10.1109/ICIP.2004.1418848

  8. Liu, P., Guo, J.M., Chamnongthai, K., Prasetyo, H.: Fusion of color histogram and LBP-based features for texture image retrieval and classification. Inf. Sci. 390, 95–111 (2017)

    Article  Google Scholar 

  9. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. TPAMI (2018)

    Google Scholar 

  10. Rocchio, J.: Relevance feedback in information retrieval. The SMART Retrieval System: Experiments in Automatic Document Processing pp. 313–323 (1971)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (sep 2014), http://arxiv.org/abs/1409.1556

  12. Sivakamasundari, G., Seenivasagam, V.: Different relevance feedback techniques in CBIR: a survey and comparative study. In: International Conference on Computing (2012)

    Google Scholar 

  13. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  14. Su, J.H., Huang, W.J., Yu, P.S., Tseng, V.S.: Efficient relevance feedback for content-based image retrieval by mining user navigation patterns. IEEE Trans. Knowl. Data Eng. 23(3), 360–372 (2011)

    Article  Google Scholar 

  15. Tian, Q., Hong, P., Huang, T.S.: Update relevant image weights for content-based image retrieval using support vector machines. In: 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), vol. 2, pp. 1199–1202 (2000)

    Google Scholar 

  16. Wang, X., Luo, G., Qin, K., Chen, A.: A Hybrid PSO and SVM algorithm for content based image retrieval. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 583–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_48

    Chapter  Google Scholar 

  17. Wu, Y., Zhang, A.: A feature re-weighting approach for relevance feedback in image retrieval. In: Proceedings. International Conference on Image Processing, vol. 2, p. II (2002). https://doi.org/10.1109/ICIP.2002.1040017

  18. Yong, R., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circ. Syst. Video Technol. 8(5), 644–655 (1998)

    Article  Google Scholar 

  19. Younus, Z.S., et al.: Content-based image retrieval using PSO and k-means clustering algorithm. Arabian J. Geosci. 8(8), 6211–6224 (2015)

    Article  Google Scholar 

  20. Yu, F., Li, Y., Wei, B., Kuang, L.: Interactive differential evolution for user-oriented image retrieval system. Soft Comput. 20(2), 449–463 (2016)

    Article  Google Scholar 

  21. Zheng, L., Yang, Y., Tian, Q.: SIFT Meets CNN: a decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1224–1244 (2018). https://doi.org/10.1109/TPAMI.2017.2709749

    Article  Google Scholar 

  22. Zou, Y., Li, C., Shirahama, K., Jiang, T., Grzegorzek, M.: Environmental microorganism image retrieval using multiple colour channels fusion and particle swarm optimisation. In: 2016 IEEE International Conference on Image Processing (ICIP). pp. 2475–2479. September 2016. https://doi.org/10.1109/ICIP.2016.7532804

Download references

Acknowledgement

This work was supported by: (i) National Natural Science Foundation of China (Grant No. 61602314); (ii) Natural Science Foundation of Guangdong Province of China (Grant No. 2016A030313043); (iii) Fundamental Research Project in the Science and Technology Plan of Shenzhen (Grant No. JCYJ20160331114551175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Chen, Y., Han, W., Huang, Q., Wen, Z. (2019). Intelligent Image Retrieval Based on Multi-swarm of Particle Swarm Optimization and Relevance Feedback. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics