Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hippocampus Segmentation in MRI Using Side U-Net Model

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

Abstract

Convolutional neural networks (CNN) have been applied in medical image analysis over the past few years. U-Net architecture is one of the most well-known CNN architectures in many different medical image segmentation tasks. However, it is hard to capture subtle local features because of its limitations in standard convolution layers and one output prediction. In addition, some objects like hippocampus in the biomedical image occupies an only small area which increases the difficulty of segmentation. In this manuscript, we present an architecture, called Side U-Net, which addresses these challenging problems. In the condition of giving unbalanced class images, Side U-Net outperforms the U-Net by upgrading loss function and capturing more important local features using multiple side outputs. And the experimental results verified our method and demonstrated that our method outperformed the U-Net model over 0.75% in terms of dice score and in the same threshold of classification, our model has a higher TPR (True Positive Rate) when evaluated in ADNI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J.C., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  2. Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_74

    Chapter  Google Scholar 

  3. Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  4. Fritscher, K.D., Peroni, M., Zaffino, P., Spadea, M.F., Schubert, R., Sharp, G.: Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Med. Phys. 41(5), 051910 (2014)

    Article  Google Scholar 

  5. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 141(5), 1097–1105 (2012)

    Google Scholar 

  7. Lee, J.K., Ekstrom, A.D., Ghetti, S.: Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage 94, 162–171 (2014)

    Article  Google Scholar 

  8. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollar, P.: Focal loss for dense object detection. In: International Conference on Computer Vision, pp. 2999–3007 (2017)

    Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  10. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1(1), 55–66 (2005)

    Article  Google Scholar 

  11. Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage 101, 494–512 (2014)

    Article  Google Scholar 

  12. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_31

    Chapter  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  15. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  16. Sharp, G., et al.: Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med. Phys. 41(5), 050902–050902 (2014)

    Article  Google Scholar 

  17. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  18. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv Computer Vision and Pattern Recognition, pp. 240–248 (2017)

    Chapter  Google Scholar 

  19. Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med. Image Anal. 18(6), 881–890 (2014)

    Article  Google Scholar 

  20. Xie, S., Tu, Z.: Holistically-nested edge detection. In: International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, W., Wang, S., Fu, H. (2019). Hippocampus Segmentation in MRI Using Side U-Net Model. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics