Abstract
Convolutional neural networks (CNN) have been applied in medical image analysis over the past few years. U-Net architecture is one of the most well-known CNN architectures in many different medical image segmentation tasks. However, it is hard to capture subtle local features because of its limitations in standard convolution layers and one output prediction. In addition, some objects like hippocampus in the biomedical image occupies an only small area which increases the difficulty of segmentation. In this manuscript, we present an architecture, called Side U-Net, which addresses these challenging problems. In the condition of giving unbalanced class images, Side U-Net outperforms the U-Net by upgrading loss function and capturing more important local features using multiple side outputs. And the experimental results verified our method and demonstrated that our method outperformed the U-Net model over 0.75% in terms of dice score and in the same threshold of classification, our model has a higher TPR (True Positive Rate) when evaluated in ADNI dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J.C., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Dhungel, N., Carneiro, G., Bradley, A.P.: Deep learning and structured prediction for the segmentation of mass in mammograms. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 605–612. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_74
Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021
Fritscher, K.D., Peroni, M., Zaffino, P., Spadea, M.F., Schubert, R., Sharp, G.: Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Med. Phys. 41(5), 051910 (2014)
Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 141(5), 1097–1105 (2012)
Lee, J.K., Ekstrom, A.D., Ghetti, S.: Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage 94, 162–171 (2014)
Lin, T., Goyal, P., Girshick, R.B., He, K., Dollar, P.: Focal loss for dense object detection. In: International Conference on Computer Vision, pp. 2999–3007 (2017)
Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)
Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1(1), 55–66 (2005)
Pipitone, J., et al.: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage 101, 494–512 (2014)
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_31
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68
Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)
Sharp, G., et al.: Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med. Phys. 41(5), 050902–050902 (2014)
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv Computer Vision and Pattern Recognition, pp. 240–248 (2017)
Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med. Image Anal. 18(6), 881–890 (2014)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: International Conference on Computer Vision, pp. 1395–1403 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yao, W., Wang, S., Fu, H. (2019). Hippocampus Segmentation in MRI Using Side U-Net Model. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-36718-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36717-6
Online ISBN: 978-3-030-36718-3
eBook Packages: Computer ScienceComputer Science (R0)