Abstract
There is a growing interest in how data generated in learning platforms, especially the interaction data, can be used to improve teaching and learning. Social network analysis and machine learning methods take advantage of network topology to detect relational patterns and model interaction behaviors. Specifically, small induced subgraphs called graphlets, provide an efficient topological description of the way each node is embedded in the meso-scale structure of a network. Here we propose to detect the roles occupied by the different participants, students and teachers, in the successive phases of courses modeled by a sequence of static snapshots. The detected positions, obtained thanks to graphlet enumeration combined with a clustering method, reveal the different roles observed in each snapshot. We also track the role changes through the overall sequence of snapshots. We apply our method to the Sqily platform and describe the mutual skill validation process. The detected roles, the transitions between roles and a overall visualization through Sankey diagrams help interpreting the course dynamics. We found that some roles act like necessary steps to engage students within an active exchange process with their classmates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 271–283. Springer (2014)
Authier, M., Lévy, P.: Les arbres de connaissances. La Découverte, Paris (1999). https://www.cairn.info/les-arbres-de-connaissances--9782707130440.htm
Braha, D., Bar-Yam, Y.: Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Adaptive Networks, pp. 39–50. Springer (2009)
Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in e-learning environments: a preliminary systematic review. Educ. Psychol. Rev. 27(1), 219–246 (2015)
Charbey, R., Prieur, C.: Stars, holes, or paths across your facebook friends: a graphlet-based characterization of many networks. Network Sci. 1–22 (2019)
Dalsgaard, C.: Social software: E-learning beyond learning management systems. Eur. J. Open, Distance e-learning 9(2) (2006)
Dillenbourg, P.: What do you mean by collaborative learning? (1999)
Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 10 (2011)
Ferguson, R., Shum, S.B.: Social learning analytics: five approaches. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 23–33. ACM (2012)
Gartner, A., Kohler, M., Riessman, F., Grosjean, M.: Des enfants enseignent aux enfants: apprendre en enseignant. Hommes et groupes, Epi (1973). https://books.google.fr/books?id=y8DuPAAACAAJ
Gu, S., Milenkovic, T.: Graphlets versus node2vec and struc2vec in the task of network alignment. arXiv preprint arXiv:1805.04222 (2018)
Holland, P.W., Leinhardt, S.: Local structure in social networks. Soc. Methodol. 7, 1–45 (1976)
Holme, P., Saramäki, J.: Temporal networks. Phys. Reports 519(3), 97–125 (2012)
Hulovatyy, Y., Chen, H., Milenković, T.: Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 31(12), i171–i180 (2015)
Komarek, A., Pavlik, J., Sobeslav, V.: Network visualization survey. In: Computational Collective Intelligence, pp. 275–284. Springer (2015)
Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011(11), P11005 (2011)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)
Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer informatics 6, CIN–S680 (2008)
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)
Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610. ACM (2017)
Paredes, W.C., Chung, K.S.K.: Modelling learning & performance: a social networks perspective. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. LAK 2012, pp. 34–42 ACM, New York (2012). http://doi.acm.org/10.1145/2330601.2330617
Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)
Suh, H., Kang, M., Moon, K., Jang, H.: Identifying peer interaction patterns and related variables in community-based learning. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning: Learning 2005: The Next 10 Years! CSCL 2005, pp. 657–661. International Society of the Learning Sciences (2005). http://dl.acm.org/citation.cfm?id=1149293.1149379
Teplovs, C., Fujita, N., Vatrapu, R.: Generating predictive models of learner community dynamics. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge. LAK 2011, pp. 147–152. ACM (2011)
Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Charbey, R. et al. (2020). Roles in Social Interactions: Graphlets in Temporal Networks Applied to Learning Analytics. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-36683-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36682-7
Online ISBN: 978-3-030-36683-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)