Nothing Special   »   [go: up one dir, main page]

Skip to main content

Roles in Social Interactions: Graphlets in Temporal Networks Applied to Learning Analytics

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Abstract

There is a growing interest in how data generated in learning platforms, especially the interaction data, can be used to improve teaching and learning. Social network analysis and machine learning methods take advantage of network topology to detect relational patterns and model interaction behaviors. Specifically, small induced subgraphs called graphlets, provide an efficient topological description of the way each node is embedded in the meso-scale structure of a network. Here we propose to detect the roles occupied by the different participants, students and teachers, in the successive phases of courses modeled by a sequence of static snapshots. The detected positions, obtained thanks to graphlet enumeration combined with a clustering method, reveal the different roles observed in each snapshot. We also track the role changes through the overall sequence of snapshots. We apply our method to the Sqily platform and describe the mutual skill validation process. The detected roles, the transitions between roles and a overall visualization through Sankey diagrams help interpreting the course dynamics. We found that some roles act like necessary steps to engage students within an active exchange process with their classmates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.sqily.com.

References

  1. Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 271–283. Springer (2014)

    Google Scholar 

  2. Authier, M., Lévy, P.: Les arbres de connaissances. La Découverte, Paris (1999). https://www.cairn.info/les-arbres-de-connaissances--9782707130440.htm

  3. Braha, D., Bar-Yam, Y.: Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Adaptive Networks, pp. 39–50. Springer (2009)

    Google Scholar 

  4. Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in e-learning environments: a preliminary systematic review. Educ. Psychol. Rev. 27(1), 219–246 (2015)

    Article  Google Scholar 

  5. Charbey, R., Prieur, C.: Stars, holes, or paths across your facebook friends: a graphlet-based characterization of many networks. Network Sci. 1–22 (2019)

    Google Scholar 

  6. Dalsgaard, C.: Social software: E-learning beyond learning management systems. Eur. J. Open, Distance e-learning 9(2) (2006)

    Google Scholar 

  7. Dillenbourg, P.: What do you mean by collaborative learning? (1999)

    Google Scholar 

  8. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 10 (2011)

    Google Scholar 

  9. Ferguson, R., Shum, S.B.: Social learning analytics: five approaches. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 23–33. ACM (2012)

    Google Scholar 

  10. Gartner, A., Kohler, M., Riessman, F., Grosjean, M.: Des enfants enseignent aux enfants: apprendre en enseignant. Hommes et groupes, Epi (1973). https://books.google.fr/books?id=y8DuPAAACAAJ

  11. Gu, S., Milenkovic, T.: Graphlets versus node2vec and struc2vec in the task of network alignment. arXiv preprint arXiv:1805.04222 (2018)

  12. Holland, P.W., Leinhardt, S.: Local structure in social networks. Soc. Methodol. 7, 1–45 (1976)

    Article  Google Scholar 

  13. Holme, P., Saramäki, J.: Temporal networks. Phys. Reports 519(3), 97–125 (2012)

    Article  Google Scholar 

  14. Hulovatyy, Y., Chen, H., Milenković, T.: Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 31(12), i171–i180 (2015)

    Article  Google Scholar 

  15. Komarek, A., Pavlik, J., Sobeslav, V.: Network visualization survey. In: Computational Collective Intelligence, pp. 275–284. Springer (2015)

    Google Scholar 

  16. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011(11), P11005 (2011)

    Article  Google Scholar 

  17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  18. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  19. Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer informatics 6, CIN–S680 (2008)

    Article  Google Scholar 

  20. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  21. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610. ACM (2017)

    Google Scholar 

  22. Paredes, W.C., Chung, K.S.K.: Modelling learning & performance: a social networks perspective. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. LAK 2012, pp. 34–42 ACM, New York (2012). http://doi.acm.org/10.1145/2330601.2330617

  23. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  25. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)

    Google Scholar 

  26. Suh, H., Kang, M., Moon, K., Jang, H.: Identifying peer interaction patterns and related variables in community-based learning. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning: Learning 2005: The Next 10 Years! CSCL 2005, pp. 657–661. International Society of the Learning Sciences (2005). http://dl.acm.org/citation.cfm?id=1149293.1149379

  27. Teplovs, C., Fujita, N., Vatrapu, R.: Generating predictive models of learner community dynamics. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge. LAK 2011, pp. 147–152. ACM (2011)

    Google Scholar 

  28. Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Charbey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charbey, R. et al. (2020). Roles in Social Interactions: Graphlets in Temporal Networks Applied to Learning Analytics. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 882. Springer, Cham. https://doi.org/10.1007/978-3-030-36683-4_41

Download citation

Publish with us

Policies and ethics