Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shielding and Shadowing: A Tale of Two Strategies for Opinion Control in the Voting Dynamics

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Abstract

This paper focuses on influence maximization or opinion control in the voting dynamics on social networks. We show two simple heuristics that are effective strategies to enhance vote shares: (i) avoiding the nodes controlled by your opponent when having a lower budget while focusing on them when having a larger budget (shadowing) and (ii) ring-fencing her influence by targeting control on adjacent nodes (shielding). The paper presents an empirical numerical evaluation of these strategies for various classes of complex networks which is backed up by analytical results obtained via a mean-field approach, in good agreement with numerical results. Importantly, we also show that optimal influence allocations tend to not be localized, but can include targeting nodes significant distances away from opposing influence.

This work was supported by the University of Southampton and by the Turing-sponsored pilot project Strategic Influence in Dynamic Opinion Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alshamsi, A., Pinheiro, F.L., Hidalgo, C.A.: Optimal diversification strategies in the networks of related products and of related research areas. Nat. Commun. 9(1), 1328 (2018). https://doi.org/10.1038/s41467-018-03740-9

    Article  Google Scholar 

  2. Arendt, D.L., Blaha, L.M.: Opinions, influence, and zealotry: a computational study on stubbornness. Comput. Math. Organ. Theory 21, 184 (2015)

    Article  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckett, L.: Trump digital director says facebook helped win the white house (2017). https://www.theguardian.com/technology/2017/oct/08/trump-digital-director-brad-parscale-facebook-advertising

  5. Braha, D., de Aguiar, M.A.M.: Voting contagion: modeling and analysis of a century of U.S. presidential elections. PLoS ONE 12(5), e0177970 (2017)

    Article  Google Scholar 

  6. Brede, M.: How does active participation effect consensus: adaptive network model of opinion dynamics and influence maximizing rewiring. Complexity 2019, 1486909 (2019)

    Article  Google Scholar 

  7. Brede, M., Restocchi, V., Stein, S.: Resisting influence: how the strength of predispositions to resist control can change strategies for optimal opinion control in the voter model. Front. Robot. AI 5, 34 (2018)

    Article  Google Scholar 

  8. Brede, M., Restocchi, V., Stein, S.: Effects of time horizons on influence maximization in the voter dynamics. J. Complex Networks 7(3), 445–468 (2019). https://academic.oup.com/comnet/article/7/3/445/5149693

    Article  MathSciNet  Google Scholar 

  9. Brede, M., Restocchi, V., Stein, S.: Transmission errors and influence maximization in the voter model. J. Stat. Mech. Theory Exp. 2019(3), 033401 (2019)

    Article  MathSciNet  Google Scholar 

  10. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  Google Scholar 

  11. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)

    Article  MathSciNet  Google Scholar 

  12. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–89 (2000)

    Article  Google Scholar 

  13. DeGroot, M.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)

    Article  Google Scholar 

  14. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403 (2002)

    Google Scholar 

  15. Galam, S., Gefen, Y., Shapir, Y.: Sociophysics: a new approach of sociological collective behaviour. i. mean-behaviour description of a strike. J. Math. Sociol. 9, 1–13 (1982)

    Article  Google Scholar 

  16. Galam, S., Javarone, M.A.: Modelling radicalization phenomena in heterogeneous populations. PLoS ONE 11, e0155407 (2016)

    Article  Google Scholar 

  17. Galam, S.: Stubbornness as an unfortunate key to win a public debate: an illustration from sociophysics. Mind Soc. 15(1), 117–130 (2016)

    Article  Google Scholar 

  18. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)

    Article  Google Scholar 

  19. Hegselmann, R., König, S., Kurz, S., Niemann, C., Rambau, J.: Optimal opinion control: the campaign problem. J. Artif. Soc. Soc. Simul. 18 (2015)

    Google Scholar 

  20. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3(4), 643–663 (1975)

    Article  MathSciNet  Google Scholar 

  21. Javarone, M.A.: Network strategies in election campaigns. J. Stat. Mech. 2014, P08013 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003). https://doi.org/10.1145/956750.956769

  23. Kuhlman, C.J., Kumar, V.A., Ravi, S.: Controlling opinion propagation in online networks. Comput. Netw. 57(10), 2121–2132 (2013)

    Article  Google Scholar 

  24. Laciana, C.E., Rovere, S.L.: Ising-like agent-based technology diffusion model: adoption patterns versus seeding strategies. Physica A 390, 1139 (2011)

    Article  Google Scholar 

  25. Lallouache, M., Chakrabarti, A.S., Chakraborti, A., Chakrabarti, B.K.: Opinion formation in kinetic exchange models: spontaneous symmetry-breaking transition. Phys. Rev. E 82, 056112 (2010)

    Article  Google Scholar 

  26. Liu, S., Shakkottai, S.: Influence maximization in social networks: an ising-model-based approach. In: Proceedings of of the 48th Annual Allerton Conference, p. 570 (2010)

    Google Scholar 

  27. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Article  Google Scholar 

  28. Lynn, C.W., Lee, D.D.: Maximizing influence in an ising network: a mean-field optimal solution. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 2495–2503 (2016)

    Google Scholar 

  29. Masuda, N.: Opinion control in complex networks. New J. Phys. 17, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  30. McFaul, M., Kass, B.: Understanding Putin’s Intentions and Actions in the 2016 U.S. Presidential Election. Technical report, Standford University, June 2019

    Google Scholar 

  31. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701 (2003)

    Article  Google Scholar 

  32. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theory Exp. 2007(08), P08029–P08029 (2007)

    Article  MathSciNet  Google Scholar 

  33. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524, 65 (2015)

    Article  Google Scholar 

  34. Porfiri, M., di Bernardo, M.: Criteria for global pinning-controllability of complex networks. Automatica 44(12), 3100–3106 (2008)

    Article  MathSciNet  Google Scholar 

  35. Ramos, M., Shao, J., Reis, S.D.S., Anteneodo, C., Andrade, J.S., Havlin, S., Makse, H.A.: How does public opinion become extreme? Sci. Rep. 5, 10032 (2015)

    Article  Google Scholar 

  36. Romero Moreno, G., Tran-Thanh, L., Brede, M.: Continuous influence maximisation for the voter dynamics: Analytical solution for leader-follower networks and gradient ascent algorithm. Manuscript submitted for publication (2019)

    Google Scholar 

  37. Sen, P.: Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges. Phys. Rev. E 83, 016108 (2011)

    Article  Google Scholar 

  38. Sîrbu, A., Loreto, V., Servedio, V.D.P., Tria, F.: Opinion Dynamics: Models, Extensions and External Effects, pp. 363–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-25658-0_17

    Google Scholar 

  39. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157–1165 (2000)

    Article  Google Scholar 

  40. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). http://www.nature.com/articles/30918

    Article  Google Scholar 

  41. Yadav, A., Wilder, B., Rice, E., Petering, R., Craddock, J., Yoshioka-Maxwell, A., Hemler, M., Onasch-Vera, L., Tambe, M., Woo, D.: Influence maximization in the field: The arduous journey from emerging to deployed application. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS (2017)

    Google Scholar 

  42. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 1–30 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Romero Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero Moreno, G., Tran-Thanh, L., Brede, M. (2020). Shielding and Shadowing: A Tale of Two Strategies for Opinion Control in the Voting Dynamics. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_57

Download citation

Publish with us

Policies and ethics