Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1092))

Included in the following conference series:

  • 1466 Accesses

Abstract

This paper presents a novel approach for crop monitoring and 3D reconstruction. A mobile platform, based on a commercial electric vehicle, was developed and equipped with different on-board sensors for crop monitoring. Acceleration, braking and steering systems of the vehicle were automatized. Fuzzy control systems were implemented to achieve autonomous navigation. A low-cost RGB-D sensor, Microsoft Kinect v2 sensor, and a reflex camera were installed on-board the platform for creation of 3D crop maps. The modelling of the field was fully automatic based on algorithms for 3D reconstructions of large areas, such as a complete row crop. Important information can be estimated from a 3D model of the crop, such as the canopy volume. For that goal, the alpha-shape algorithm was proposed. The on-going developments presented in this paper arise as a promising tool to achieve better crop management increasing crop profitability while reducing agrochemical inputs and environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rovira-Más, F., Chatterjee, I., Sáiz-Rubio, V.: The role of GNSS in the navigation strategies of cost-effective agricultural robots. Comput. Electron. Agric. 112, 172–183 (2015)

    Article  Google Scholar 

  2. Case New Holland. http://assets.cnhindustrial.com/caseih/NAFTA/NAFTAASSETS/Products/Advanced-Farming-Systems/Brochures/AFS_Brochure.pdf. Accessed 03 Sept 2019

  3. Bakker, T., van Asselt, K., Bontsema, J., Müller, J., van Straten, G.: Autonomous navigation using a robot platform in a sugar beet field. Biosyst. Eng. 109(4), 357–368 (2011)

    Article  Google Scholar 

  4. Bengochea-Guevara, J.M., Conesa-Muñoz, J., Andújar, D., Ribeiro, A.: Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors 16(3), 276 (2016)

    Article  Google Scholar 

  5. Naio Technologies. http://www.naio-technologies.com/machines-agricoles/robot-de-desherbage-oz/. Accessed 03 Sept 2019

  6. Wang, Q., Zhang, Q., Rovira-Más, F., Tian, L.: Stereovision-based lateral offset measurement for vehicle navigation in cultivated stubble fields. Biosyst. Eng. 109(4), 258–265 (2011)

    Article  Google Scholar 

  7. Hansen, S., Bayramoglu, E., Andersen, J.C., Ravn, O., Andersen, N., Poulsen, N.K.: Orchard navigation using derivative free Kalman filtering. In: 2011 International Conference on American Control Conference (ACC), IEEE, pp. 4679–4684 (2011)

    Google Scholar 

  8. Libby, J., Kantor, G.: Deployment of a point and line feature localization system for an outdoor agriculture vehicle. In: 2011 International Conference on Robotics and Automation (ICRA), IEEE, pp. 1565–1570 (2011)

    Google Scholar 

  9. Weiss, U., Biber, P.: Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 59(5), 265–273 (2011)

    Article  Google Scholar 

  10. West, P.W.: Tree and Forest Measurement, vol. 20. Springer, Heidelberg (2009)

    Book  Google Scholar 

  11. Anderson, C.D.J.: Electric and Hybrid Cars: A History. McFarland, North Carolina (2010)

    Google Scholar 

  12. Pagliari, D., Pinto, L.: Calibration of Kinect for Xbox One and comparison between the two generations of microsoft sensors. Sensors 11, 27569–27589 (2015)

    Article  Google Scholar 

  13. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., Siegwart, R.: Kinect v2 for mobile robot navigation: evaluation and modelling. In: 2015 International Conference on Advanced Robotics (ICAR), IEEE, pp. 388–394 (2015)

    Google Scholar 

  14. Conesa-Munoz, J., Bengochea-Guevara, J.M., Andujar, D., Ribeiro, A.: Efficient distribution of a fleet of heterogeneous vehicles in agriculture: a practical approach to multi-path planning. In: IEEE International Conference on Autonomous Robot Systems and Competitions, IEEE, pp. 56–61 (2015)

    Google Scholar 

  15. Fraichard, T., Garnier, P.: Fuzzy control to drive car-like vehicles. Robot. Autom. Syst. 34, 1–22 (2001)

    Article  Google Scholar 

  16. Naranjo, J.E., Sotelo, M., Gonzalez, C., Garcia, R., Sotelo, M.A.: Using fuzzy logic in automated vehicle control. IEEE Intell. Syst. 22, 36–45 (2007)

    Article  Google Scholar 

  17. Kodagoda, K.R.S., Wijesoma, W.S., Teoh, E.K.: Fuzzy speed and steering control of an AGV. IEEE Trans. Control Syst. Technol. 10, 112–120 (2002)

    Article  Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  19. Sugeno, M.: On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Trans. Fuzzy Syst. 7, 201–224 (1999)

    Article  Google Scholar 

  20. Niessner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. 32(6), 169 (2013)

    Article  Google Scholar 

  21. Roth, S.D.: Ray casting for modeling solids. Comput. Graph. Image Process. 18(2), 109–144 (1982)

    Article  Google Scholar 

  22. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  23. Bengochea-Guevara, J.M., Andújar, D., Sanchez-Sardana, F.L., Cantuña, K., Ribeiro, A.: A low-cost approach to automatically obtain accurate 3D models of woody crops. Sensors 18(1), 30 (2017)

    Article  Google Scholar 

  24. Lowe, G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  25. Bundler: Structure from motion (SFM) for unordered image collections. http://phototour.cs.washington.edu. Accessed 03 Sept 2019

  26. Remondino, F., Spera, M. G., Nocerino, E., Menna, F., Nex, F., Gonizzi-Barsanti, S.: Dense image matching: comparisons and analyses. In: 2013 Digital Heritage International Congress, DigitalHeritage, vol. 2, pp. 740–741 (1987)

    Google Scholar 

  27. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 1994(13), 43–72 (1994)

    Article  Google Scholar 

  28. Bengochea-Guevara, J.M., Andújar, D., Sanchez-Sardana, F.L., Cantuña, K., Ribeiro, A.: 3D monitoring of woody crops using a medium-sized field inspection vehicle. Adv. Intell. Syst. Comput. 694, 239–250 (2017)

    Google Scholar 

  29. Colaço, A.F., Trevisan, R.G., Molin, J.P., Rosell-Polo, J.R., Escolà, A.: a method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling. Remote Sensing 9(8), 763 (2017)

    Article  Google Scholar 

  30. Martinez-Guanter, J., Ribeiro, A., Peteinatos, G.G., Pérez-Ruiz, M., Gerhards, R., Bengochea-Guevara, J.M., Machleb, J., Andújar, D.: Low-cost three-dimensional modeling of crop plants. Sensors 19(3), 2883 (2019)

    Article  Google Scholar 

  31. Rueda-Ayala, V.P., Peña, J.M., Höglind, M., Bengochea-Guevara, J.M., Andújar, D.: Comparing UAV-based technologies and RGB-D reconstruction methods for plant height and biomass monitoring on grass ley. Sensors 19(3), 535 (2019)

    Article  Google Scholar 

  32. Lafarge, T., Pateiro-Lopez, B., Possolo, A., Dunkers, J.P.: R implementation of a polyhedral approximation to a 3D set of points using the alpha-shape. J. Stat. Softw. 56, 1–19 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Spanish Ministerio de Economía y Competitividad (AGL2014-52465-C4-3-R) and the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (AGL2017-83325-C4-1-R and AGL2017-83325-C4-3-R). Karla Cantuña thanks the service commission for the remuneration given by the Cotopaxi Technical University. The authors also wish to acknowledge the ongoing technical support of Damián Rodríguez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Bengochea-Guevara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bengochea-Guevara, J.M., Andújar, D., Cantuña, K., Garijo-Del-Río, C., Ribeiro, A. (2020). An Autonomous Guided Field Inspection Vehicle for 3D Woody Crops Monitoring. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_14

Download citation

Publish with us

Policies and ethics