Abstract
A number of studies in personalized adaptive learning have focused on generating suitable learning paths based on user’s model, considering the current level of knowledge of the user, preferred learning styles and a model of the subject domain. These factors are sufficient in many e-learning applications, where users consume the learning content at their own pace. In other applications, such as within organized curricula there are other factors to be considered too. At the university, we deliver courses featuring project work and examination which the students have to deliver based on a schedule of deadlines. This time axis, therefore, presents a significant factor in recommending the most suitable learning objects at the given time of the term. To tackle this issue we have designed a courseware platform where time is one of the key factors determining the learner’s context. In this paper, we focus especially on modelling the time access using an ontology and we show some preliminary results that are implied by this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note the difference between subevent and subclass. The latter stands for a logical relation between two classes, one being more specific than the other (expressed by OWL subClassOf axiom). The former is an aggregative relation between two instances of events of different granularity a lecture happening during a course run (expressed by OWL object properties subEvent and superEvent).
References
Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Elsevier, Oxford (2011)
Antoniou, G., Van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2004)
Aroyo, L., et al.: Interoperability in personalized adaptive learning. J. Educ. Technol. Soc. 9(2), 4–18 (2006)
Bahmani, A., Sedigh, S., Hurson, A.: Ontology-Based Recommendation Algorithms for Personalized Education. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 111–120. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32597-7_10
Brickley, D., Guha, R.V. (eds.): RDF Schema 1.1. Recommendation, W3C, 25 February 2014
Brusilovsky, P.: From adaptive hypermedia to the adaptive web. In: Szwillus, G., Ziegler, J. (eds.) Mensch & Computer 2003, pp. 21–24. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-322-80058-9_3
Buder, J., Schwind, C.: Learning with personalized recommender systems: a psychological view. Comput. Hum. Behav. 28(1), 207–216 (2012)
Cobos, C., et al.: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes. Inf. Process. Manag. 49(3), 607–625 (2013)
Cox, S., Little, C. (eds.): Time Ontology in OWL. Recommendation, W3C, 19 October 2017
Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: Owl 2: the next step for owl. Web Semant.: Sci. Serv. Agents World Wide Web 6(4), 309–322 (2008)
Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)
Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016). https://doi.org/10.1145/2844544
Homola, M., Kubincová, Z., Čulík, J., Trungel, T.: Peer review support in a virtual learning environment. In: Li, Y., et al. (eds.) State-of-the-Art and Future Directions of Smart Learning. LNET, pp. 351–355. Springer, Heidelberg (2016). https://doi.org/10.1007/978-981-287-868-7_43
Homola, M., Kubincová, Z., Kľuka, J., Švolík, M., Darjanin, M., Zapalač, P.: Team workflow and peer review in a virtual learning environment. In: 2017 16th International Conference on Information Technology Based Higher Education and Training, pp. 1–6. IEEE (2017)
Huang, C., Liu, L., Tang, Y., Lu, L.: Semantic web enabled personalized recommendation for learning paths and experiences. In: Zhu, M. (ed.) ICCIC 2011. CCIS, vol. 235, pp. 258–267. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24022-5_43
Jovanović, J., Gašević, D., Knight, C., Richards, G.: Ontologies for effective use of context in e-learning settings. J. Educ. Technol. Soc. 10(3), 47–59 (2007)
Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z.: E-learning personalization based on hybrid recommendation strategy and learning style identification. Comput. Educ. 56(3), 885–899 (2011)
Lau, R.Y., Song, D., Li, Y., Cheung, T.C., Hao, J.X.: Toward a fuzzy domain ontology extraction method for adaptive e-learning. IEEE Trans. Knowl. Data Eng. 21(6), 800–813 (2008)
Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semantic Web 7(4), 399–419 (2016). https://doi.org/10.3233/SW-150200
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems in technology enhanced learning. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook. CCIS, pp. 387–415. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_12
Robin, C., Uma, G.: An ontology driven e-learning agent for software risk management. Int. J. Acad. Res. 3(2) (2011)
Saleena, B., Srivatsa, S.K.: Using concept similarity in cross ontology for adaptive e-learning systems. J. King Saud Univ.-Comput. Inf. Sci. 27(1), 1–12 (2015)
Schmidt, A., Winterhalter, C.: User context aware delivery of e-learning material: approach and architecture. J. Univ. Comput. Sci. 10(1), 28–36 (2004)
Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing (2000)
Staab, S., Studer, R. (eds.): Handbook on Ontologies. IHIS. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3
Tarus, J.K., Niu, Z., Mustafa, G.: Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artif. Intell. Rev. 50(1), 21–48 (2018)
Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z.: Protus 2.0: ontology-based semantic recommendation in programming tutoring system. Expert Syst. Appl. 39(15), 12229–12246 (2012)
Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73549-6_88
Acknowledgments
This work was supported from the Slovak national VEGA project no. 1/0797/18 and from APVV grant no. SK-TW-2017-0006.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Homola, M., Kl’uka, J., Kubincová, Z., Marmanová, P., Cifra, M. (2019). Timing the Adaptive Learning Process with Events Ontology. In: Herzog, M., Kubincová, Z., Han, P., Temperini, M. (eds) Advances in Web-Based Learning – ICWL 2019. ICWL 2019. Lecture Notes in Computer Science(), vol 11841. Springer, Cham. https://doi.org/10.1007/978-3-030-35758-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-35758-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35757-3
Online ISBN: 978-3-030-35758-0
eBook Packages: Computer ScienceComputer Science (R0)