Abstract
Creating robust robot platforms that function in the real world is a difficult task. Adding the requirement that the platform should be capable of learning, from nothing, ways to generate its own movement makes the task even harder. Evolutionary Robotics is a promising field that combines the creativity of evolutionary optimization with the real-world focus of robotics to bring about unexpected control mechanisms in addition to whole new robot designs. Constructing a platform that is capable of these feats is difficult, and it is important to share experiences and lessons learned so that designers of future robot platforms can benefit. In this paper, we introduce our robotics platform and detail our experiences with real-world evolution. We present thoughts on initial design considerations and key insights we have learned from extensive experimentation. We hope to inspire new platform development and hopefully reduce the threshold of doing real-world legged robot evolution.
This work is partially supported by The Research Council of Norway under grant agreement 240862 and through its Centers of Excellence scheme, project number 262762. Simulations with DyRET were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Exploring mechanically self-reconfiguring robots for autonomous design. In: 2018 ICRA Workshop on Autonomous Robot Design (2018)
Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1, 4 (2014)
Wilson, A., Golonka, S.: Embodied cognition is not what you think it is. Front. Psychol. 4, 58 (2013)
Nordmoen, J., Nygaard, T.F., Ellefsen, K.O., Glette, K.: Evolved embodied phase coordination enables robust quadruped robot locomotion. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2019)
Nygaard, T.F., Samuelsen, E., Glette, K.: Overcoming initial convergence in multi-objective evolution of robot control and morphology using a two-phase approach. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 825–836. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_53
Silva, M.F., Tenreiro Machado, J.: A historical perspective of legged robots. J. Vib. Control 13(9–10), 1447–1486 (2007)
Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)
Doncieux, S., Bredeche, N., Mouret, J.-B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)
Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 3040–3045. IEEE (2000)
Lohmann, S., Yosinski, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: an open-source quadruped platform for evolutionary robotics. In: Artificial Life Conference Proceedings 12, pp. 387–392. MIT Press (2012)
Haasdijk, E., Bredeche, N., Eiben, A.E.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. Plos one 9(6), 1–14 (2014)
Koos, S., Cully, A., Mouret, J.-B.: Fast damage recovery in robotics with the t-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)
Picardi, G., Hauser, H., Laschi, C., Calisti, M.: Morphologically induced stability on an underwater legged robot with a deformable body. Int. J. Robot. Res. (2019) https://doi.org/10.1177/0278364919840426
Mouret, J.-B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1121–1124. ACM (2017)
Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337
Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)
Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17, 122–145 (2013)
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)
Pfeifer, R., Gómez, G.: Morphological computation–connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00616-6_5
Hoffman, G.: Embodied cognition for autonomous interactive robots. Top. Cogn. Sci. 4(4), 759–772 (2012)
Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Self-modifying morphology experiments with DyRET: dynamic robot for embodied testing. In: 2019 IEEE International Conference on Robotics and Automation (ICRA) (2019)
Nygaard, T.F., Nordmoen, J.: DyRET software repository (2019). https://github.com/dyret-robot/dyret_documentation
Nygaard, T.F., Torresen, J., Glette, K.: Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)
Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2018)
Nordmoen, J., Ellefsen, K.O., Glette, K.: Combining MAP-elites and incremental evolution to generate gaits for a mammalian quadruped robot. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 719–733. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_48
Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Evolving robots on easy mode: towards a variable complexity controller for quadrupeds. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 616–632. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_41
Nordmoen, J., Samuelsen, E., Ellefsen, K.O., Glette, K.: Dynamic mutation in MAP-elites for robotic repertoire generation. In: Artificial Life Conference Proceedings, pp. 598–605. MIT Press (2018)
Ryan, T.P., Morgan, J.: Modern experimental design. J. Stat. Theory Pract. 1(3–4), 501–506 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nygaard, T.F., Nordmoen, J., Ellefsen, K.O., Martin, C.P., Tørresen, J., Glette, K. (2019). Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing. In: Bach, K., Ruocco, M. (eds) Nordic Artificial Intelligence Research and Development. NAIS 2019. Communications in Computer and Information Science, vol 1056. Springer, Cham. https://doi.org/10.1007/978-3-030-35664-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-35664-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35663-7
Online ISBN: 978-3-030-35664-4
eBook Packages: Computer ScienceComputer Science (R0)