Nothing Special   »   [go: up one dir, main page]

Skip to main content

Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing

  • Conference paper
  • First Online:
Nordic Artificial Intelligence Research and Development (NAIS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1056))

Included in the following conference series:

Abstract

Creating robust robot platforms that function in the real world is a difficult task. Adding the requirement that the platform should be capable of learning, from nothing, ways to generate its own movement makes the task even harder. Evolutionary Robotics is a promising field that combines the creativity of evolutionary optimization with the real-world focus of robotics to bring about unexpected control mechanisms in addition to whole new robot designs. Constructing a platform that is capable of these feats is difficult, and it is important to share experiences and lessons learned so that designers of future robot platforms can benefit. In this paper, we introduce our robotics platform and detail our experiences with real-world evolution. We present thoughts on initial design considerations and key insights we have learned from extensive experimentation. We hope to inspire new platform development and hopefully reduce the threshold of doing real-world legged robot evolution.

This work is partially supported by The Research Council of Norway under grant agreement 240862 and through its Centers of Excellence scheme, project number 262762. Simulations with DyRET were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Exploring mechanically self-reconfiguring robots for autonomous design. In: 2018 ICRA Workshop on Autonomous Robot Design (2018)

    Google Scholar 

  2. Eiben, A.E.: Grand challenges for evolutionary robotics. Front. Robot. AI 1, 4 (2014)

    Article  Google Scholar 

  3. Wilson, A., Golonka, S.: Embodied cognition is not what you think it is. Front. Psychol. 4, 58 (2013)

    Article  Google Scholar 

  4. Nordmoen, J., Nygaard, T.F., Ellefsen, K.O., Glette, K.: Evolved embodied phase coordination enables robust quadruped robot locomotion. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2019)

    Google Scholar 

  5. Nygaard, T.F., Samuelsen, E., Glette, K.: Overcoming initial convergence in multi-objective evolution of robot control and morphology using a two-phase approach. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 825–836. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_53

    Chapter  Google Scholar 

  6. Silva, M.F., Tenreiro Machado, J.: A historical perspective of legged robots. J. Vib. Control 13(9–10), 1447–1486 (2007)

    Article  Google Scholar 

  7. Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)

    Article  Google Scholar 

  8. Doncieux, S., Bredeche, N., Mouret, J.-B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)

    Article  Google Scholar 

  9. Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 3040–3045. IEEE (2000)

    Google Scholar 

  10. Lohmann, S., Yosinski, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: an open-source quadruped platform for evolutionary robotics. In: Artificial Life Conference Proceedings 12, pp. 387–392. MIT Press (2012)

    Google Scholar 

  11. Haasdijk, E., Bredeche, N., Eiben, A.E.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. Plos one 9(6), 1–14 (2014)

    Article  Google Scholar 

  12. Koos, S., Cully, A., Mouret, J.-B.: Fast damage recovery in robotics with the t-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)

    Article  Google Scholar 

  13. Picardi, G., Hauser, H., Laschi, C., Calisti, M.: Morphologically induced stability on an underwater legged robot with a deformable body. Int. J. Robot. Res. (2019) https://doi.org/10.1177/0278364919840426

  14. Mouret, J.-B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1121–1124. ACM (2017)

    Google Scholar 

  15. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  16. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  17. Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17, 122–145 (2013)

    Article  Google Scholar 

  18. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)

    Google Scholar 

  19. Pfeifer, R., Gómez, G.: Morphological computation–connecting brain, body, and environment. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS (LNAI), vol. 5436, pp. 66–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00616-6_5

    Chapter  Google Scholar 

  20. Hoffman, G.: Embodied cognition for autonomous interactive robots. Top. Cogn. Sci. 4(4), 759–772 (2012)

    Article  Google Scholar 

  21. Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Self-modifying morphology experiments with DyRET: dynamic robot for embodied testing. In: 2019 IEEE International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  22. Nygaard, T.F., Nordmoen, J.: DyRET software repository (2019). https://github.com/dyret-robot/dyret_documentation

  23. Nygaard, T.F., Torresen, J., Glette, K.: Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  24. Nygaard, T.F., Martin, C.P., Samuelsen, E., Torresen, J., Glette, K.: Real-world evolution adapts robot morphology and control to hardware limitations. In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM (2018)

    Google Scholar 

  25. Nordmoen, J., Ellefsen, K.O., Glette, K.: Combining MAP-elites and incremental evolution to generate gaits for a mammalian quadruped robot. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 719–733. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_48

    Chapter  Google Scholar 

  26. Nygaard, T.F., Martin, C.P., Torresen, J., Glette, K.: Evolving robots on easy mode: towards a variable complexity controller for quadrupeds. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 616–632. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_41

    Chapter  Google Scholar 

  27. Nordmoen, J., Samuelsen, E., Ellefsen, K.O., Glette, K.: Dynamic mutation in MAP-elites for robotic repertoire generation. In: Artificial Life Conference Proceedings, pp. 598–605. MIT Press (2018)

    Google Scholar 

  28. Ryan, T.P., Morgan, J.: Modern experimental design. J. Stat. Theory Pract. 1(3–4), 501–506 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tønnes F. Nygaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nygaard, T.F., Nordmoen, J., Ellefsen, K.O., Martin, C.P., Tørresen, J., Glette, K. (2019). Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing. In: Bach, K., Ruocco, M. (eds) Nordic Artificial Intelligence Research and Development. NAIS 2019. Communications in Computer and Information Science, vol 1056. Springer, Cham. https://doi.org/10.1007/978-3-030-35664-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35664-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35663-7

  • Online ISBN: 978-3-030-35664-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics