Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

Abstract

In this paper, an extension of the Sugeno integral using the operators of the intuitionistic fuzzy sets is presented. The proposed method consists of using the Sugeno integral as an integration method of multiple information sources using the degrees of membership and non-membership through the application of the operators of the intuitionistic fuzzy sets. The proposed method is used to combine the modules output of a modular neural network for face recognition. In this paper, the focus is on aggregation operator that use measures with intuitionistic fuzzy sets, in particular the Sugeno integral. The performance of the proposed method is compared with the traditional Sugeno integral using the Cropped Yale database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.- Techn. Library of Bulg. Acad. Of Sci., 1697/84, in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6 (1983)

    Google Scholar 

  2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  3. Atanassov, K.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst. 61, 137–142 (1994)

    Article  MathSciNet  Google Scholar 

  4. Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)

    Book  Google Scholar 

  5. Atanassov, K., Vassilev, P., Tsvetkov, R.: Intuitionistic Fuzzy Sets, Measures and Integrals, Bulgarian Academic Monographs, vol. 12, Sofia: “Prof. Marin Drinov” Academic Publishing House (2013)

    Google Scholar 

  6. Bezdek, J.C., Keller, J., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  7. Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  8. Database CROPPED YALE Face: Cambridge University Computer Laboratory. (November 2012). Retrieved from: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  9. González, C.I., Melin, P., Castro, J.R., Castillo, O., Mendoza, O.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Article  Google Scholar 

  10. Klir, G.: Uncertainty and Information. Wiley, Hoboken, NJ (2005)

    Book  Google Scholar 

  11. Lei, Y., Liu, J., Yin, H.: Intrusion detection techniques based on improved intuitionistic fuzzy neural networks. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), Ostrawva, pp. 518–521 (2016)

    Google Scholar 

  12. Liu, Y., Kong, Z.: Interval intuitionistic fuzzy-valued Sugeno integral. In: Proceeding of 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, pp. 89–92 (2012)

    Google Scholar 

  13. Martínez, G.E., Mendoza, O., Castro, J.R., Melin, P., Castillo, O.: Choquet integral with interval type 2 Sugeno measures as an integration method for modular neural networks. Proc. of WCSC 2014, 71–86 (2014)

    Google Scholar 

  14. Melin, P., Castillo, O.: Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Industr. Electron. 48(5), 951–955 (2001)

    Article  Google Scholar 

  15. Melin, P., Martinez, G.E., Tsvetkov, R.: Choquet and Sugeno integrals and intuitionistic fuzzy integrals as aggregation operators. In: Proceeding of 4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, pp. 95–99. Mersin, Turkey (2017)

    Google Scholar 

  16. Melin, P., Sánchez, D., Castillo, O.: Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)

    Article  Google Scholar 

  17. Mendez-Vazquez, A., Gader, P., Keller, J.M., Chamberlin, K.: Minimum classification error training for Choquet integrals with applications to landmine detection. IEEE Trans. Fuzzy Syst. 16(1), 225–238 (2008)

    Article  Google Scholar 

  18. Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24(11), 1115–1133 (2009)

    Article  Google Scholar 

  19. Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for module relevance estimation in Sugeno integration of modular neural networks. In: Soft Computing for Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 154, pp. 115–127. Springer (2008)

    Google Scholar 

  20. Sánchez, D., Melin, P., Castillo, O.: Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. of AI 64, 172–186 (2017)

    Article  Google Scholar 

  21. Štajner-Papuga, I., Lozanov-Crvenković, Z., Grujić, G.: On Sugeno integral based mean value for fuzzy quantities. In: Proceeding of IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), pp. 155–160. Subotica (2016)

    Google Scholar 

  22. Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Doctoral Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  23. Torra, V., Narukawa, Y.: Modeling Decisions, Information Fusion and Aggregation Operators. Springer-Verlag, Heidelberg (2007)

    Book  Google Scholar 

  24. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination of neural classifiers: a comparative study. Pattern Recogn. Lett. 20(4), 429–444 (1999)

    Article  Google Scholar 

  25. Yager, R.: A knowledge-based approach to adversarial decision-making Int. J. Intell. Syst. 23(1), 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, G.E., Melin, P. (2020). Intuitionistic Fuzzy Sugeno Integral for Face Recognition. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_53

Download citation

Publish with us

Policies and ethics