Abstract
In this paper, an extension of the Sugeno integral using the operators of the intuitionistic fuzzy sets is presented. The proposed method consists of using the Sugeno integral as an integration method of multiple information sources using the degrees of membership and non-membership through the application of the operators of the intuitionistic fuzzy sets. The proposed method is used to combine the modules output of a modular neural network for face recognition. In this paper, the focus is on aggregation operator that use measures with intuitionistic fuzzy sets, in particular the Sugeno integral. The performance of the proposed method is compared with the traditional Sugeno integral using the Cropped Yale database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci.- Techn. Library of Bulg. Acad. Of Sci., 1697/84, in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6 (1983)
Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
Atanassov, K.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst. 61, 137–142 (1994)
Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)
Atanassov, K., Vassilev, P., Tsvetkov, R.: Intuitionistic Fuzzy Sets, Measures and Integrals, Bulgarian Academic Monographs, vol. 12, Sofia: “Prof. Marin Drinov” Academic Publishing House (2013)
Bezdek, J.C., Keller, J., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer-Verlag, New York (2005)
Choquet, G.: Theory of capacities. Ann. Inst. Fourier, Grenoble 5, 131–295 (1953)
Database CROPPED YALE Face: Cambridge University Computer Laboratory. (November 2012). Retrieved from: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
González, C.I., Melin, P., Castro, J.R., Castillo, O., Mendoza, O.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)
Klir, G.: Uncertainty and Information. Wiley, Hoboken, NJ (2005)
Lei, Y., Liu, J., Yin, H.: Intrusion detection techniques based on improved intuitionistic fuzzy neural networks. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), Ostrawva, pp. 518–521 (2016)
Liu, Y., Kong, Z.: Interval intuitionistic fuzzy-valued Sugeno integral. In: Proceeding of 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, pp. 89–92 (2012)
Martínez, G.E., Mendoza, O., Castro, J.R., Melin, P., Castillo, O.: Choquet integral with interval type 2 Sugeno measures as an integration method for modular neural networks. Proc. of WCSC 2014, 71–86 (2014)
Melin, P., Castillo, O.: Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Industr. Electron. 48(5), 951–955 (2001)
Melin, P., Martinez, G.E., Tsvetkov, R.: Choquet and Sugeno integrals and intuitionistic fuzzy integrals as aggregation operators. In: Proceeding of 4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, pp. 95–99. Mersin, Turkey (2017)
Melin, P., Sánchez, D., Castillo, O.: Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)
Mendez-Vazquez, A., Gader, P., Keller, J.M., Chamberlin, K.: Minimum classification error training for Choquet integrals with applications to landmine detection. IEEE Trans. Fuzzy Syst. 16(1), 225–238 (2008)
Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24(11), 1115–1133 (2009)
Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for module relevance estimation in Sugeno integration of modular neural networks. In: Soft Computing for Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 154, pp. 115–127. Springer (2008)
Sánchez, D., Melin, P., Castillo, O.: Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. of AI 64, 172–186 (2017)
Štajner-Papuga, I., Lozanov-Crvenković, Z., Grujić, G.: On Sugeno integral based mean value for fuzzy quantities. In: Proceeding of IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), pp. 155–160. Subotica (2016)
Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Doctoral Thesis, Tokyo Institute of Technology (1974)
Torra, V., Narukawa, Y.: Modeling Decisions, Information Fusion and Aggregation Operators. Springer-Verlag, Heidelberg (2007)
Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination of neural classifiers: a comparative study. Pattern Recogn. Lett. 20(4), 429–444 (1999)
Yager, R.: A knowledge-based approach to adversarial decision-making Int. J. Intell. Syst. 23(1), 1–21 (2008)
Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Martínez, G.E., Melin, P. (2020). Intuitionistic Fuzzy Sugeno Integral for Face Recognition. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-35445-9_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35444-2
Online ISBN: 978-3-030-35445-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)