Abstract
Genetic programming (GP) has been successfully used to automatically design effective dispatching rules for job shop scheduling (JSS) problems. It has been shown that hybridizing global search with local search can significantly improve the performance of many evolutionary algorithms such as GP because local search can directly improve the exploitation ability of these algorithms. Inspired by this, we aim to enhance the quality of evolved dispatching rules for many-objective JSS through hybridizing GP with Pareto Local Search (PLS) techniques. There are two challenges herein. First, the neighborhood structure in GP is not trivially defined. Second, the acceptance criteria during the local search for many-objective JSS has to be carefully designed to guide the search properly. In this paper, we propose a new algorithm that seamlessly integrates GP with Pareto Local Search (GP-PLS). To the best of our knowledge, it is the first time to combine GP with PLS for solving many-objective JSS. To evaluate the effectiveness of our new algorithm, GP-PLS is compared with the GP-NSGA-III algorithm, which is the current state-of-the-art algorithm for many-objective JSS. The experimental results confirm that the newly proposed method can outperform GP-NSGA-III thanks to the proper use of local search techniques. The sensitivity of the PLS-related parameters on the performance of GP-PLS is also experimentally investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Błażewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: conventional and new solution techniques. Eur. J. Oper. Res. 93(1), 1–33 (1996)
Chen, B., Zeng, W., Lin, Y., Zhang, D.: A new local search-based multiobjective optimization algorithm. IEEE Trans. Evol. Comput. 19(1), 50–73 (2015)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime pareto local search. Eur. J. Oper. Res. 243(2), 369–385 (2015)
Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: further developments. Prod. Plan. Control 11(2), 171–178 (2000)
Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 392–403 (1998)
Masood, A., Chen, G., Mei, Y., Zhang, M.: Reference point adaption method for genetic programming hyper-heuristic in many-objective job shop scheduling. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 116–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_8
Masood, A., Mei, Y., Chen, G., Zhang, M.: Many-objective genetic programming for job-shop scheduling. In: Proceedings of 2016 IEEE Congress on Evolutionary Computation. IEEE (2016)
Nguyen, S.: Automatic design of dispatching rules for job shop scheduling with genetic programming. Ph.D. thesis (2013)
Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)
Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-heuristic approach for combinatorial optimisation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1299–1306. ACM (2011)
Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop scheduling: a genetic programming approach. In: Uyar, A., Ozcan, E., Urquhart, N. (eds.) Automated Scheduling and Planning. Studies in Computational Intelligence, vol. 505, pp. 251–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39304-4_10
Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic programming via iterated local search for dynamic job shop scheduling. IEEE Trans. Cybern. 45(1), 1–14 (2015)
Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg (2012)
Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)
Tsai, C.W., Rodrigues, J.J.P.C.: Metaheuristic scheduling for cloud: a survey. IEEE Syst. J. 8(1), 279–291 (2014)
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, Technical report, pp. 1–30 (2008)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Masood, A., Chen, G., Mei, Y., Al-Sahaf, H., Zhang, M. (2019). Genetic Programming with Pareto Local Search for Many-Objective Job Shop Scheduling. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-35288-2_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35287-5
Online ISBN: 978-3-030-35288-2
eBook Packages: Computer ScienceComputer Science (R0)