Nothing Special   »   [go: up one dir, main page]

Skip to main content

Answering Why-Questions Using Probabilistic Logic Programming

  • Conference paper
  • First Online:
AI 2019: Advances in Artificial Intelligence (AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11919))

Included in the following conference series:

  • 2355 Accesses

Abstract

We present a novel architecture of a closed domain question answering system that learns to answer why-questions from a small number of example interpretations. We use a probabilistic logic programming framework that can learn probabilities for rules from positive and negative example interpretations. These rules are then used by a meta-interpreter to generate an explanation in the form of a proof for a why-question. The explanation is displayed as an answer to the question together with a probability. In certain contexts, follow-up questions can be asked that conditionally depend on these why-questions and have an effect on the probability of the subsequent answer. The presented approach is a contribution to explainable artificial intelligence that aims to take machine learning out of the black-box.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by searching the clause space. Theor. Pract. Logic Program. 15(2), 169–212 (2015)

    Article  Google Scholar 

  2. Bernstein, A., Kaufmann, E.: GINO – a guided input natural language ontology editor. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 144–157. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_11

    Chapter  Google Scholar 

  3. Blockeel, H., et al.: The ACE data mining system, user’s manual. Katholieke Universiteit Leuven, Belgium (2006)

    Google Scholar 

  4. Bromberger, S.: Why-questions. In: Colodny, R.G. (ed.) Mind and Cosmos: Essays in Contemporary Science and Philosophy. University of Pittsburgh Press, Pittsburgh (1966)

    Google Scholar 

  5. Clark, P., et al.: Think you have solved question answering? Try arc, the ai2 reasoning challenge (2018). arXiv preprint arXiv:1803.05457

  6. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015)

    Article  MathSciNet  Google Scholar 

  7. Franconi, E., Guagliardo, P., Tessaris, S., Trevisan, M.: Quelo: an ontology-driven query interface. Proc. DL 2011(745), 488–498 (2011)

    Google Scholar 

  8. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web (2017)

    Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  10. Lipton, Z.C.: The mythos of model interpretability (2016). arXiv preprint arXiv:1606.03490

  11. Mollá, D., Vicedo, J.L.: Question answering in restricted domains: an overview. Comput. Linguist. 33(1), 41–61 (2007)

    Article  Google Scholar 

  12. Oh, J.H., et al.: Why question answering using sentiment analysis and word classes. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 368–378. Association for Computational Linguistics (2012)

    Google Scholar 

  13. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic Books, New York (2018)

    MATH  Google Scholar 

  14. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  15. Riguzzi, F.: cplint Manual. SWI-Prolog Version (2016). http://ds.ing.unife.it/~friguzzi/software/cplint-swi/manual.pdf

  16. Schwitter, R.: Specifying events and their effects in controlled natural language. Proc. Soc. Behav. Sci. 27, 12–21 (2011)

    Article  Google Scholar 

  17. Sterling, L., Shapiro, E.Y.: The Art of Prolog: Advanced Programming Techniques. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  18. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27775-0_30

    Chapter  MATH  Google Scholar 

  19. Yang, Y., Yih, W.T., Meek, C.: WIKIQA: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2013–2018 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Salam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salam, A., Schwitter, R., Orgun, M.A. (2019). Answering Why-Questions Using Probabilistic Logic Programming. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35288-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35287-5

  • Online ISBN: 978-3-030-35288-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics