Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum Random Oracle Model with Auxiliary Input

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11921))

  • 1811 Accesses

Abstract

The random oracle model (ROM) is an idealized model where hash functions are modeled as random functions that are only accessible as oracles. Although the ROM has been used for proving many cryptographic schemes, it has (at least) two problems. First, the ROM does not capture quantum adversaries. Second, it does not capture non-uniform adversaries that perform preprocessings. To deal with these problems, Boneh et al. (Asiacrypt’11) proposed using the quantum ROM (QROM) to argue post-quantum security, and Unruh (CRYPTO’07) proposed the ROM with auxiliary input (ROM-AI) to argue security against preprocessing attacks. However, to the best of our knowledge, no work has dealt with the above two problems simultaneously.

In this paper, we consider a model that we call the QROM with (classical) auxiliary input (QROM-AI) that deals with the above two problems simultaneously and study security of cryptographic primitives in the model. That is, we give security bounds for one-way functions, pseudorandom generators, (post-quantum) pseudorandom functions, and (post-quantum) message authentication codes in the QROM-AI.

We also study security bounds in the presence of quantum auxiliary inputs. In other words, we show a security bound for one-wayness of random permutations (instead of random functions) in the presence of quantum auxiliary inputs. This resolves an open problem posed by Nayebi et al. (QIC’15). In a context of complexity theory, this implies \( \mathsf {NP}\cap \mathsf {coNP} \not \subseteq \mathsf {BQP/qpoly}\) relative to a random permutation oracle, which also answers an open problem posed by Aaronson (ToC’05).

This work was done in part while the first author was conducting an internship program in NTT Secure Platform Laboratories, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “pq” stands for “post-quantum”.

  2. 2.

    More precisely, if both S and T are polynomial in the security parameter and (appropriate parts of) domains and ranges of the random oracle are exponentially large then our bounds become negligibly small.

  3. 3.

    They claim that their security bound is \(\widetilde{O}(ST^2/N)\). However, their definition of one-wayness is weaker than ours, and if we use our definition, then the quadratic security loss naturally occurs. See the full version for more detailed discussion.

  4. 4.

    Since the compression lemma works for unbounded-time encoders and decoders, we can assume that the decoder has an unbounded computational power to simulate quantum computations.

  5. 5.

    Since the decoder has unbounded computational power, it can control the randomness for measurements in executions of the quantum algorithm \(\mathcal A\).

  6. 6.

    In the actual proof, we rely on the semi-classical one-way to hiding theorem recently given by Ambainis, Hamburg, and Unruh [AHU19].

  7. 7.

    More precisely, since an auxiliary input cannot depend on x, we consider the partial truth table of \(\mathcal {O}\) that gives the first \(i-1\) bits of \(\mathcal {O}(x)\) for all x as a part of the auxiliary input.

  8. 8.

    Nayebi et al. [NABT15] also studied Yao’s box problem. However, they only considered the worst case, so their result is not applicable for our purpose.

  9. 9.

    Recall that this is a review of the classical case, and thus this condition is well-defined.

  10. 10.

    Though the encoding does not contain the description of G, the decoder can recover it from R.

  11. 11.

    A similar idea was used by Aaronson [Aar05] to show limitations of quantum one-way communication and algorithms with quantum advice.

  12. 12.

    In an actual simulation, the randomness should be approximated by a rational number up to a sufficient precision. We just think of the randomness as a real number for simplicity.

  13. 13.

    Looking ahead, this is used in the proof of Claim 2.

  14. 14.

    Specifically, \(R_2\) consists of independent random coins \(r_2(a,y)\) for each \((a,y) \in [K]\times [M]\) to simulate .

  15. 15.

    More concretely, \(\varepsilon ^6>CST^2\log ^6 M (1+\log KN)/KN\) for sufficiently large C implies contradiction.

  16. 16.

    Looking ahead, this is used in the proof of Claim 3.

  17. 17.

    This class was originally introduced by Nishimura and Yamakami [NY04] with the name \(\mathsf {BQP/^*Qpoly}\), and renamed to \(\mathsf {BQP/qpoly}\) by Aaronson [Aar05]. See these papers for the detailed definition.

References

  1. Aaronson, S.: Limitations of quantum advice and one-way communication. Theory Comput. 1(1), 1–28 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_10

    Chapter  Google Scholar 

  3. Aaronson, S., Rothblum, G.: Gentle measurement of quantum states and differential privacy. In: STOC 2019, pp. 322–333 (2019)

    Google Scholar 

  4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  5. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Quantum Comput. Quantum Inf. 305, 53–74 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. SIGACT News 28(2), 14–19 (1997)

    Article  Google Scholar 

  7. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_17

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

    Google Scholar 

  9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  10. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35

    Chapter  Google Scholar 

  11. Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_9

    Chapter  MATH  Google Scholar 

  12. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation, ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_23

    Chapter  MATH  Google Scholar 

  13. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_9

    Chapter  Google Scholar 

  14. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocessing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_14

    Chapter  Google Scholar 

  15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13

    Chapter  Google Scholar 

  16. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_16

    Chapter  Google Scholar 

  17. De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against one-way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 649–665. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_35

    Chapter  Google Scholar 

  18. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforgeable in the quantum random-oracle model. In: TQC 2015, pp. 147–162 (2015). https://eprint.iacr.org/2015/878

  19. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM J. Comput. 29(3), 790–803 (1999)

    Article  MathSciNet  Google Scholar 

  20. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

    Article  MathSciNet  Google Scholar 

  21. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC 1996, pp. 212–219 (1996)

    Google Scholar 

  22. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. In: FOCS 2000, pp. 305–313 (2000)

    Google Scholar 

  23. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_12

    Chapter  Google Scholar 

  24. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory 26(4), 401–406 (1980)

    Article  MathSciNet  Google Scholar 

  25. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Informatsii 9(3), 3–11 (1973)

    MATH  Google Scholar 

  26. Hosoyamada, A., Yamakawa, T.: Finding collisions in a quantum world: quantum black-box separation of collision-resistance and one-wayness. Cryptology ePrint Archive, Report 2018/1066 (2018)

    Google Scholar 

  27. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_15

    Chapter  Google Scholar 

  28. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  29. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    Chapter  MATH  Google Scholar 

  30. Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE in the quantum random oracle model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 253–282. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_9

    Chapter  MATH  Google Scholar 

  31. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12

    Chapter  Google Scholar 

  32. Nayebi, A., Aaronson, S., Belovs, A., Trevisan, L.: Quantum lower bound for inverting a permutation with advice. Quantum Inf. Comput. 15(11–12), 901–913 (2015)

    MathSciNet  Google Scholar 

  33. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: FOCS 1999, pp. 369–376 (1999)

    Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, vol. 2. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Nayak, A., Salzman, J.: Limits on the ability of quantum states to convey classical messages. J. ACM 53(1), 184–206 (2006)

    Article  MathSciNet  Google Scholar 

  36. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Inf. Process. Lett. 90(4), 195–204 (2004)

    Article  MathSciNet  Google Scholar 

  37. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17

    Chapter  MATH  Google Scholar 

  38. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  MATH  Google Scholar 

  39. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_12

    Chapter  Google Scholar 

  40. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  41. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999)

    Article  MathSciNet  Google Scholar 

  42. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: FOCS 1982, pp. 80–91 (1982)

    Google Scholar 

  43. Yao, A.C.-C.: Coherent functions and program checkers. In: STOC 1990, pp. 84–94 (1990)

    Google Scholar 

  44. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp. 679–687 (2012)

    Google Scholar 

  45. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44

    Chapter  MATH  Google Scholar 

Download references

Acknowledgment

We thank anonymous reviewers of Asiacrypt 2019 and Andreas Hülsing for their helpful comments. Minki Hhan was partially supported by the Institute for Information & Communications Technology Promotion (IITP) Grant through the Korean Government (MSIT), (Development of lattice-based post-quantum public-key cryptographic schemes), under Grant 2017-0-00616 and by the Samsung Research Funding Center of Samsung Electronics under Project SRFC-TB1403-52.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minki Hhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hhan, M., Xagawa, K., Yamakawa, T. (2019). Quantum Random Oracle Model with Auxiliary Input. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11921. Springer, Cham. https://doi.org/10.1007/978-3-030-34578-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34578-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34577-8

  • Online ISBN: 978-3-030-34578-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics