Abstract
This chapter presents the development of a control scheme, we named as neural inverse optimal pinning control to achieve output trajectory tracking on uncertain complex networks with nonidentical nodes. A recurrent high order neural network is used to identify the unknown system dynamics of a small fraction of nodes (pinned ones) and by means of this neural model, an inverse optimal controller is designed to synchronize the whole network at an output desired reference. The proposed controller effectiveness is illustrated via simulations. The illustrative example is composed of a network of ten different chaotic nodes.
This work is supported by CONACYT, Mexico, Project 257200.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.Y. Alanis, E.N. Sanchez, A.G. Loukianov, M.A. Perez, Real-time recurrent neural state estimation. IEEE Trans. Neural Netw. 22(3), 497–505 (2011)
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)
A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
M. Barahona, L.M. Pecora, Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054101 (2002)
F. Blaabjerg, R. Teodorescu, M. Liserre, A.V. Timbus, Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)
C.P. Chen, G.X. Wen, Y.J. Liu, F.Y. Wang, Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1217–1226 (2014)
G. Chen, Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 14(1), 1–9 (2017)
G. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(7), 1465–1466 (1999)
P. Kokotović, M. Arcak, Constructive nonlinear control: a historical perspective. Automatica 37(5), 637–662 (2001)
E.B. Kosmatopoulos, M.A. Christodoulou, P.A. Ioannou, Dynamical neural networks that ensure exponential identification error convergence. Neural Netw. 10(2), 299–314 (1997)
E.B. Kosmatopoulos, M.M. Polycarpou, M.A. Christodoulou, P.A. Ioannou, High-order neural network structures for identification of dynamical systems. IEEE Trans. Neural Netw. 6(2), 422–431 (1995)
M. Krstic, H. Deng, Stabilization of nonlinear uncertain systems (Springer, New York, 1998)
M. Krstic, I. Kanellakopoulos, P.V. Kokotovic et al., Nonlinear and Adaptive Control Design, vol. 222 (Wiley, New York, 1995)
M. Krstic, Z.H. Li, Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Autom. Control 43(3), 336–350 (1998)
A.U. Levin, K.S. Narendra, Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control. IEEE Trans. Neural Netw. 7(1), 30–42 (1996)
X. Li, X. Wang, G. Chen, Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circ. Syst. I Regul. Pap. 51(10), 2074–2087 (2004)
Y.Y. Liu, J.J. Slotine, A.L. Barabási, Controllability of complex networks. Nature 473(7346), 167 (2011)
E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
T. Matsumoto, A chaotic attractor from Chua’s circuit. IEEE Trans. Circ. Syst. 31(12), 1055–1058 (1984)
K.S. Narendra, S. Mukhopadhyay, Adaptive control using neural networks and approximate models. IEEE Trans. Neural Netw. 8(3), 475–485 (1997)
M.E. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)
A.S. Poznyak, W. Yu, E.N. Sanchez, J.P. Perez, Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Netw. 10(6), 1402–1411 (1999)
L.J. Ricalde, E.N. Sanchez, Output tracking with constrained inputs via inverse optimal adaptive recurrent neural control. Eng. Appl. Artif. Intell. 21(4), 591–603 (2008)
O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)
G.A. Rovithakis, M.A. Christodoulou, Adaptive Control with Recurrent High-Order Neural Networks: Theory and Industrial Applications (Springer Science & Business Media, 2012)
E.N. Sanchez, F. Ornelas-Tellez, Discrete-Time Inverse Optimal Control for Nonlinear Systems (CRC Press, Boca Raton, 2017)
E.N. Sanchez, L.J. Ricalde, Chaos control and synchronization, with input saturation, via recurrent neural networks. Neural Netw. 16(5), 711–717 (2003)
E.N. Sanchez, L.J. Ricalde, R. Langari, D. Shahmirzadi, Rollover prediction and control in heavy vehicles via recurrent high order neural networks. Intell. Autom. Soft Comput. 17(1), 95–107 (2011)
E.N. Sanchez, D.I. Rodriguez-Castellanos, G. Chen, R. Ruiz-Cruz, Pinning control of complex network synchronization: a recurrent neural network approach. Int. J. Control Autom. Syst. 1–10 (2017)
R. Sepulchre, M. Jankovic, P.V. Kokotovic, Constructive Nonlinear Control (Springer Science & Business Media, 2012)
F. Sorrentino, M. di Bernardo, F. Garofalo, G. Chen, Controllability of complex networks via pinning. Phys. Rev. E 75(4), 046103 (2007)
J.A. Suykens, J.P. Vandewalle, B.L. de Moor, Artificial Neural Networks for Modelling and Control of Non-linear Systems (Springer Science & Business Media, 2012)
C.J. Vega, E.N. Sanchez, Neural inverse optimal pinning control for synchronization of complex networks with nonidentical chaotic nodes, in 2018 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2018), pp. 1–5
L. Wang, Y.X. Sun, Robustness of pinning a general complex dynamical network. Phys. Lett. A 374(15–16), 1699–1703 (2010)
X.F. Wang, G. Chen, Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 310(3), 521–531 (2002)
X.F. Wang, G. Chen, Complex networks: small-world, scale-free and beyond. IEEE Circ. Syst. Mag. 3(1), 6–20 (2003)
D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)
J. Xiang, G. Chen, On the v-stability of complex dynamical networks. Automatica 43(6), 1049–1057 (2007)
J. Xiang, G. Chen, Analysis of pinning-controlled networks: a renormalization approach. IEEE Trans. Autom. Control 54(8), 1869–1875 (2009)
L. Xiang, Z. Chen, Z. Liu, F. Chen, Z. Yuan, Pinning control of complex dynamical networks with heterogeneous delays. Comput. Math. Appl. 56(5), 1423–1433 (2008)
J. Zhou, T. Chen, Synchronization in general complex delayed dynamical networks. IEEE Trans. Circ. Syst. I Regul. Pap. 53(3), 733–744 (2006)
J. Zhou, J.S. Lu, J. Lü, Pinning adaptive synchronization of a general complex dynamical network. Automatica 44(4), 996–1003 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Vega, C.J., Sanchez, E.N. (2020). Neural Inverse Optimal Pinning Control of Output Trajectory Tracking for Uncertain Complex Networks with Nonidentical Nodes. In: Castillo, O., Melin, P. (eds) Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Studies in Computational Intelligence, vol 827. Springer, Cham. https://doi.org/10.1007/978-3-030-34135-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-34135-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34134-3
Online ISBN: 978-3-030-34135-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)