Abstract
Information access needs to be uncomplicated, users rather use incorrect data which is easily received than correct information which is harder to obtain. Querying bibliographic metadata from digital libraries mainly supports simple textual queries. A user’s demand for answering more sophisticated queries could be fulfilled by the usage of SQL. As such means are highly complex and challenging even for trained programmers, a domain-specific query language is needed to provide a straightforward way to access data.
In this paper we present SchenQL, a simple query language focused on bibliographic metadata in the area of computer science while using the vocabulary of domain-experts. By facilitating a plain syntax and fundamental aggregate functions, we propose an easy-to-learn domain-specific query language capable of search and exploration. It is suitable for domain-experts as well as casual users while still providing the possibility to answer complicated queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amaral, V., Helmer, S., Moerkotte, G.: A visual query language for HEP analysis. In: Nuclear Science Symposium Conference Record, vol. 2, pp. 829–833 (2003)
Amer-Yahia, S., Lakshmanan, L.V.S., Yu, C.: SocialScope: enabling information discovery on social content sites. In: CIDR 2009 (2009)
Ballard, B.W., Stumberger, D.E.: Semantic acquisition in TELI: a transportable, user-customized natural language processor. In: ACL, pp. 20–29 (1986)
Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - The Concepts and Technology Behind Search, Second edn. Pearson Education Ltd., Harlow (2011). ISBN 978-0-321-41691-9
Bates, M.J.: Task force recommendation 2.3: research and design review: improving user access to library catalog and portal information: final report (version 3). In: Proceedings of the Bicentennial Conference on Bibliographic Control for the New Millennium (2003)
Beall, J.: The weaknesses of full-text searching. J. Acad. Librarianship 34(5), 439–443 (2008)
Berget, G., Sandnes, F.R.: Why textual search interfaces fail: a study of cognitive skills needed to construct successful queries. Inf. Res. 24(1), n1 (2019)
Bloehdorn, S., et al.: Ontology-based question answering for digital libraries. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 14–25. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74851-9_2
Borodin, A., Kiselev, Y., Mirvoda, S., Porshnev, S.: On design of domain-specific query language for the metallurgical industry. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 505–515. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_45
Buffereau, B., Picouet, P.: STIL: an extended resource description framework and an advanced query language for metadatabases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 849–858. Springer, Heidelberg (2006). https://doi.org/10.1007/11733836_62
Crawford, W.: MARC for Library Use: Understanding the USMARC Formats. Knowledge Industry Publications, Inc. (1994)
Collberg, C.S.: A fuzzy visual query language for a domain-specific web search engine. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 176–190. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46037-3_20
Curtiss, M., et al.: Unicorn: a system for searching the social graph. PVLDB 6(11), 1150–1161 (2013)
Dries, A., Nijssen, S., De Raedt, L.: BiQL: a query language for analyzing information networks. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS (LNAI), vol. 7250, pp. 147–165. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31830-6_11
Guidi, F., Schena, I.: A query language for a metadata framework about mathematical resources. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 105–118. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36469-2_9
Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005)
Kreutz, C.K., Wolz, M., Schenkel, R.: SchenQL - A Domain-Specific Query Language on Bibliographic Metadata. In: CoRR abs/1906.06132 (2019)
Leser, U.: A query language for biological networks. In: ECCB/JBI 2005, p. 39 (2005)
Ley, M.: DBLP - some lessons learned. PVLDB 2(2), 1493–1500 (2009)
Li, Y., Yang, H., Jagadish, H.V.: Constructing a generic natural language interface for an XML database. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 737–754. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_44
Lim, E.-P., Lu, Y.: Distributed query processing for clustered and bibliographic databases. In: DASFAA, pp. 441–450 (1997)
Madaan, A.: Domain specific multi-stage query language for medical document repositories. PVLDB 6(12), 1410–1415 (2013)
Parr, T.J., Quong, R.W.: ANTLR: a predicated- LL(k) parser generator. Softw. Pract. Exper. 25(7), 789–810 (1995)
Quoc, L., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, pp. 1188–1196 (2014)
Rohil, M.K., Rohil, R.K., Rohil, D., Runthala, A.: Natural language interfaces to domain specific knowledge bases: an illustration for querying elements of the periodic table. In: ICCI*CC 2018, pp. 517–523 (2018)
San Martín, M., Gutiérrez, C., Wood, P.T.: SNQL: a social networks query and transformation language. In: AMW 2011 (2011)
Schaefer, A., Jordan, M., Klas, C.-P., Fuhr, N.: Active support for query formulation in virtual digital libraries: a case study with DAFFODIL. In: Rauber, A., Christodoulakis, S., Tjoa, A.M. (eds.) ECDL 2005. LNCS, vol. 3652, pp. 414–425. Springer, Heidelberg (2005). https://doi.org/10.1007/11551362_37
Seo, J., Guo, S., Lam, M.S.: SociaLite: an efficient graph query language based on datalog. IEEE Trans. Knowl. Data Eng. 27(7), 1824–1837 (2015)
Sheng, L., Özsoyoǧlu, Z.M., Özsoyoǧlu, G.: A graph query language and its query processing. In: ICDE 1999, pp. 572–581 (1999)
Tian, H., Sunderraman, R., Calin-Jageman, R., Yang, H., Zhu, Y., Katz, P.S.: NeuroQL: a domain-specific query language for neuroscience data. In: Grust, T., et al. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 613–624. Springer, Heidelberg (2006). https://doi.org/10.1007/11896548_46
Xu, B., et al.: NADAQ: natural language database querying based on deep learning. IEEE Access 7, 35012–35017 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kreutz, C.K., Wolz, M., Schenkel, R. (2019). SchenQL: A Concept of a Domain-Specific Query Language on Bibliographic Metadata. In: Jatowt, A., Maeda, A., Syn, S. (eds) Digital Libraries at the Crossroads of Digital Information for the Future. ICADL 2019. Lecture Notes in Computer Science(), vol 11853. Springer, Cham. https://doi.org/10.1007/978-3-030-34058-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-34058-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34057-5
Online ISBN: 978-3-030-34058-2
eBook Packages: Computer ScienceComputer Science (R0)