Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection and Characterization of Local Inverted Repeats Regularities

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 13th International Conference (PACBB 2019)

Abstract

To explore the inverted repeats regularities along the genome sequences, we propose a sliding window method to extract the concentration scores of inverted repeats periodic regularities and the total mass of possible inverted repeats pairs. We apply the method to the human genome and locate the regions with the potential for the formation of large number of hairpin/cruciform structures. The number of found windows with periodic regularities is small and the patterns of occurrence are chromosome specific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, Y., Zhou, X.: Targeting non-B-form DNA in living cells. Chem. Rec. 13(4), 371–384 (2013)

    Article  Google Scholar 

  2. Cer, R.Z., Bruce, K.H., Mudunuri, U.S., Yi, M., Volfovsky, N., Luke, B.T., Bacolla, A., Collins, J.R., Stephens, R.M.: Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucl. Acids Res. 39(suppl–1), D383–D391 (2010)

    Article  Google Scholar 

  3. Cer, R.Z., Donohue, D.E., Mudunuri, U.S., Temiz, N.A., Loss, M.A., Starner, N.J., Halusa, G.N., Volfovsky, N., Yi, M., Luke, B.T., et al.: Non-B DB v2. 0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucl. Acids Res. 41(D1), D94–D100 (2012)

    Article  Google Scholar 

  4. Bacolla, A., Wells, R.D.: Non-B DNA conformations, genomic rearrangements, and human disease. J. Biol. Chem. 279(46), 47411–47414 (2004)

    Article  Google Scholar 

  5. Inagaki, H., Kato, T., Tsutsumi, M., Ouchi, Y., Ohye, T., Kurahashi, H.: Palindrome-mediated translocations in humans: A new mechanistic model for gross chromosomal rearrangements. Front. Genet. 7, 125 (2016)

    Article  Google Scholar 

  6. Kolb, J., Chuzhanova, N.A., Högel, J., Vasquez, K.M., Cooper, D.N., Bacolla, A., Kehrer-Sawatzki, H.: Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosom. Res. 17(4), 469–483 (2009)

    Article  Google Scholar 

  7. Wang, Y., Leung, F.C.: Long inverted repeats in eukaryotic genomes: recombinogenic motifs determine genomic plasticity. FEBS Lett. 580(5), 1277–1284 (2006)

    Article  Google Scholar 

  8. Tavares, A.H., Pinho, A.J., Silva, R.M., Rodrigues, J.M., Bastos, C.A., Ferreira, P.J., Afreixo, V.: DNA word analysis based on the distribution of the distances between symmetric words. Sci. Rep. 7(1), 728 (2017)

    Article  Google Scholar 

  9. Bastos, C.A.C., Afreixo, V., Rodrigues, J.M.O.S., Pinho, A.J.: An analysis of symmetric words in human DNA: adjacent vs non-adjacent word distances. In: PACBB 2018 - 12th International Conference on Practical Applications of Computational Biology & Bioinformatics, Toledo, Spain, June 2018

    Google Scholar 

  10. Bastos, C.A.C., Afreixo, V., Rodrigues, J.M.O.S., Pinho, A.J., Silva, R.: Distribution of distances between symmetric words in the human genome: Analysis of regular peaks. Computational Life Sciences, Interdisciplinary Sciences (2019)

    Google Scholar 

  11. Kent, W., Sugnet, C., Furey, T., Roskin, K., Pringle, T., Zahler, A., Haussler, D.: The human genome browser at UCSC. Genome Res. 12(6), 996–1006 (2002)

    Article  Google Scholar 

  12. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker Open- 4.0 (2013–2015)

    Google Scholar 

  13. Benson, G.: Tandem repeats finder: a program to analyze dna sequences. Nucl. Acids Res. 27(2), 573 (1999)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by FEDER (“Programa Operacional Fatores de Competitividade” - COMPETE) and FCT (“Fundação para a Ciência e a Tecnologia”), within the projects UID/MAT/04106/2019 to CIDMA (Center for Research and Development in Mathematics and Applications) and UID/CEC/00127/2019 to IEETA (Institute of Electronics and Informatics Engineering of Aveiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. C. Bastos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bastos, C.A.C., Afreixo, V., Rodrigues, J.M.O.S., Pinho, A.J. (2020). Detection and Characterization of Local Inverted Repeats Regularities. In: Fdez-Riverola, F., Rocha, M., Mohamad, M., Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Computational Biology and Bioinformatics, 13th International Conference. PACBB 2019. Advances in Intelligent Systems and Computing, vol 1005 . Springer, Cham. https://doi.org/10.1007/978-3-030-23873-5_14

Download citation

Publish with us

Policies and ethics