Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2019)

Abstract

In this paper, a novel Multilayer Hidden Conditional Random Fields based weakly supervised Cervical Histopathological Image Classification framework is proposed to classify well, moderately and poorly differentiation stages of cervical cancer. First, color, texture and Deep Learning features are extracted to represent the histopathological image patches. Then, based on the extracted features, Artificial Neural Network, Support Vector Machine and Random Forest classifiers are designed to calculate the patch-level classification probability. Thirdly, effective features are selected to generate unary and binary potentials of the proposed Multilayer Hidden Conditional Random Fields framework. Lastly, using the generated potentials, the final image-level classification result is predicted by our Multilayer Hidden Conditional Random Fields model, and an accuracy of \(88\%\) is obtained on a practical histopathological image dataset with more than 100 AQP stained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., et al.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR 2005, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  6. Decoste, D., Schölkopf, B.: Training invariant support vector machines. Mach. Learn. 46(1–3), 161–190 (2002)

    Article  Google Scholar 

  7. Demir, C., Yener, B.: Automated Cancer Diagnosis Based on Histopathological Images: A Systematic Survey. Technical Report, Rensselaer Polytechnic Institute (2005)

    Google Scholar 

  8. Fahey, M., Irwig, L., Macaskill, P.: Meta-analysis of Pap test accuracy. Am. J. Epidemiol. 141(7), 680–689 (1995)

    Article  Google Scholar 

  9. Gupta, R.: Conditional Random Fields. Unpublished Report, IIT Bombay (2006)

    Google Scholar 

  10. Hammersley, J., Clifford, P.: Markov Fields on Finite Graphs and Lattices. Unpublished (1971)

    Google Scholar 

  11. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  12. He, X., Zemel, R., Carreira-Perpiñán, M.: Multiscale conditional random fields for image labeling. In: Proceedings of CVPR 2004, vol. 2, pp. II–II (2004)

    Google Scholar 

  13. Ho, T.: Random decision forests. In: Proceedings of ICDAR 1995, vol. 1, pp. 278–282 (1995)

    Google Scholar 

  14. Kekre, H., Thepade, S., Sarode, T., et al.: Image retrieval using texture features extracted from GLCM, LBG and KPE. Int. J. Comput. Theory Eng. 2(5), 695 (2010)

    Article  Google Scholar 

  15. Kohonen, T.: An introduction to neural computing. Neural Netw. 1(1), 3–16 (1988)

    Article  Google Scholar 

  16. Kosov, S., Shirahama, K., Li, C., et al.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recognit. 77, 248–261 (2018)

    Article  Google Scholar 

  17. Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vis. 68(2), 179–201 (2006)

    Article  Google Scholar 

  18. Kumar, V., Robbins, S.: Robbins Basic Pathology. Saunders/Elsevier, America (2007)

    Google Scholar 

  19. Lafferty, J., A.McCallum, Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML 2001, pp. 282–289 (2001)

    Google Scholar 

  20. Li, C., Shirahama, K., Grzegorzek, M.: Environmental microorganism classification using sparse coding and weakly supervised learning. In: Proceedings of EMC@ICMR 2015, pp. 9–14 (2015)

    Google Scholar 

  21. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of ICCV 1999, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  22. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  23. Novak, C., Shafer, S.: Anatomy of a color histogram. In: Proceedings of CVPR 1992, pp. 599–605 (1992)

    Google Scholar 

  24. Nyirjesy, I.: Conization of Cervix (2015). http://emedicine.medscape.com/article/270156-overview

  25. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-scale Image Recognition (2014). ArXiv Preprint p. online

    Google Scholar 

  26. Suard, F., Rakotomamonjy, A., Bensrhair, A., et al.: Pedestrian detection using infrared images and histograms of oriented gradients. In: Proceedings of IV 2006, pp. 206–212 (2006)

    Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR 2016, pp. 2818–2826 (2016)

    Google Scholar 

  28. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: Proceedings of CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  29. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  30. Wang, X., Wu, J., Yang, H.: Robust image retrieval based on color histogram of local feature regions. Multimed. Tools Appl. 49(2), 323–345 (2010)

    Article  Google Scholar 

  31. Wang, Y., Rajapakse, J.: Contextual modeling of functional mr images with conditional random fields. IEEE Trans. Med. Imaging 25(6), 804–812 (2006)

    Article  Google Scholar 

  32. Zheng, S., Jayasumana, S., Romera-Paredes, B., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of ICCV 2015 (2015)

    Google Scholar 

Download references

Acknowledgment

We thank the funds supported by the “National Natural Science Foundation of China” (No. 61806047), the “Fundamental Research Funds for the Central Universities” (No. N171903004), and the “Scientific Research Launched Fund of Liaoning Shihua University” (No. 2017XJJ-061). We also thank Hao Chen and He Ma, due to their contributions are considered as the same important as the first author and corresponding author, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C. et al. (2019). Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_19

Download citation

Publish with us

Policies and ethics