Abstract
In this paper, a novel Multilayer Hidden Conditional Random Fields based weakly supervised Cervical Histopathological Image Classification framework is proposed to classify well, moderately and poorly differentiation stages of cervical cancer. First, color, texture and Deep Learning features are extracted to represent the histopathological image patches. Then, based on the extracted features, Artificial Neural Network, Support Vector Machine and Random Forest classifiers are designed to calculate the patch-level classification probability. Thirdly, effective features are selected to generate unary and binary potentials of the proposed Multilayer Hidden Conditional Random Fields framework. Lastly, using the generated potentials, the final image-level classification result is predicted by our Multilayer Hidden Conditional Random Fields model, and an accuracy of \(88\%\) is obtained on a practical histopathological image dataset with more than 100 AQP stained samples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bray, F., Ferlay, J., Soerjomataram, I., et al.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR 2005, vol. 1, pp. 886–893 (2005)
Decoste, D., Schölkopf, B.: Training invariant support vector machines. Mach. Learn. 46(1–3), 161–190 (2002)
Demir, C., Yener, B.: Automated Cancer Diagnosis Based on Histopathological Images: A Systematic Survey. Technical Report, Rensselaer Polytechnic Institute (2005)
Fahey, M., Irwig, L., Macaskill, P.: Meta-analysis of Pap test accuracy. Am. J. Epidemiol. 141(7), 680–689 (1995)
Gupta, R.: Conditional Random Fields. Unpublished Report, IIT Bombay (2006)
Hammersley, J., Clifford, P.: Markov Fields on Finite Graphs and Lattices. Unpublished (1971)
Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
He, X., Zemel, R., Carreira-Perpiñán, M.: Multiscale conditional random fields for image labeling. In: Proceedings of CVPR 2004, vol. 2, pp. II–II (2004)
Ho, T.: Random decision forests. In: Proceedings of ICDAR 1995, vol. 1, pp. 278–282 (1995)
Kekre, H., Thepade, S., Sarode, T., et al.: Image retrieval using texture features extracted from GLCM, LBG and KPE. Int. J. Comput. Theory Eng. 2(5), 695 (2010)
Kohonen, T.: An introduction to neural computing. Neural Netw. 1(1), 3–16 (1988)
Kosov, S., Shirahama, K., Li, C., et al.: Environmental microorganism classification using conditional random fields and deep convolutional neural networks. Pattern Recognit. 77, 248–261 (2018)
Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vis. 68(2), 179–201 (2006)
Kumar, V., Robbins, S.: Robbins Basic Pathology. Saunders/Elsevier, America (2007)
Lafferty, J., A.McCallum, Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML 2001, pp. 282–289 (2001)
Li, C., Shirahama, K., Grzegorzek, M.: Environmental microorganism classification using sparse coding and weakly supervised learning. In: Proceedings of EMC@ICMR 2015, pp. 9–14 (2015)
Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of ICCV 1999, vol. 2, pp. 1150–1157 (1999)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Novak, C., Shafer, S.: Anatomy of a color histogram. In: Proceedings of CVPR 1992, pp. 599–605 (1992)
Nyirjesy, I.: Conization of Cervix (2015). http://emedicine.medscape.com/article/270156-overview
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-scale Image Recognition (2014). ArXiv Preprint p. online
Suard, F., Rakotomamonjy, A., Bensrhair, A., et al.: Pedestrian detection using infrared images and histograms of oriented gradients. In: Proceedings of IV 2006, pp. 206–212 (2006)
Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR 2016, pp. 2818–2826 (2016)
Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: Proceedings of CVPR 2008, pp. 1–8 (2008)
Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Wang, X., Wu, J., Yang, H.: Robust image retrieval based on color histogram of local feature regions. Multimed. Tools Appl. 49(2), 323–345 (2010)
Wang, Y., Rajapakse, J.: Contextual modeling of functional mr images with conditional random fields. IEEE Trans. Med. Imaging 25(6), 804–812 (2006)
Zheng, S., Jayasumana, S., Romera-Paredes, B., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of ICCV 2015 (2015)
Acknowledgment
We thank the funds supported by the “National Natural Science Foundation of China” (No. 61806047), the “Fundamental Research Funds for the Central Universities” (No. N171903004), and the “Scientific Research Launched Fund of Liaoning Shihua University” (No. 2017XJJ-061). We also thank Hao Chen and He Ma, due to their contributions are considered as the same important as the first author and corresponding author, respectively.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, C. et al. (2019). Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-23762-2_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23761-5
Online ISBN: 978-3-030-23762-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)