Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dolev-Yao Theory with Associative Blindpair Operators

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11601))

Included in the following conference series:

Abstract

In the context of modeling cryptographic tools like blind signatures and homomorphic encryption, the Dolev-Yao model is typically extended with an operator over which encryption is distributive. The intruder deduction problem has a non-elementary upper bound when the extended operator is an Abelian group operator. Here we show that the intruder deduction problem is DEXPTIME-complete when we restrict the operator to satisfy only the associative property. We propose an automata-based analysis for the upper bound and use the reachability problem for alternating pushdown systems to show the lower bound.

S. P. Suresh—Partially supported by an Infosys Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006). https://doi.org/10.1016/j.tcs.2006.08.032

    Article  MathSciNet  MATH  Google Scholar 

  2. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Satisfiability of general intruder constraints with and without a set constructor. J. Symbolic Comput. 80, 27–61 (2017). https://doi.org/10.1016/j.jsc.2016.07.009

    Article  MathSciNet  MATH  Google Scholar 

  3. Baskar, A.: Decidability results for extended Dolev-Yao theories. Ph.D. thesis, Chennai Mathematical Institute (2011)

    Google Scholar 

  4. Baskar, A., Ramanujam, R., Suresh, S.: Dolev-Yao theory with associative blindpair operators, Technical report (2019). http://www.cmi.ac.in/~spsuresh/pdfs/ciaa19-tr.pdf

  5. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols. In: Samet, D. (ed.) TARK 2007, pp. 62–71 (2007). https://doi.org/10.1145/1324249.1324261

  6. Baskar, A., Ramanujam, R., Suresh, S.P.: A dexptime-complete Dolev-Yao theory with distributive encryption. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 102–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_11

    Chapter  Google Scholar 

  7. Ciobâca, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols under convergent equational theories. J. Autom. Reason. 48(2), 219–262 (2012). https://doi.org/10.1007/s10817-010-9197-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: LICS 2003, pp. 271–280. IEEE Computer Society (2003). https://doi.org/10.1109/LICS.2003.1210067

  9. Cortier, V., Delaune, S.: Decidability and combination results for two notions of knowledge in security protocols. J. Autom. Reason. 48(4), 441–487 (2012). https://doi.org/10.1007/s10817-010-9208-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. J. Comput. Secur. 14(1), 1–43 (2006). http://content.iospress.com/articles/journal-of-computer-security/jcs244

    Article  Google Scholar 

  11. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

    Article  MathSciNet  MATH  Google Scholar 

  12. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of Abelian groups with distributive encryption. Inf. Comput. 205(4), 581–623 (2007). https://doi.org/10.1016/j.ic.2006.10.008

    Article  MathSciNet  MATH  Google Scholar 

  13. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions and composed keys is NP-complete. Theor. Comput. Sci. 299(1–3), 451–475 (2003). https://doi.org/10.1016/S0304-3975(02)00490-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternating pushdown systems with an application to the computation of certificate chains. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914_13

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baskar, A., Ramanujam, R., Suresh, S.P. (2019). Dolev-Yao Theory with Associative Blindpair Operators. In: Hospodár, M., Jirásková, G. (eds) Implementation and Application of Automata. CIAA 2019. Lecture Notes in Computer Science(), vol 11601. Springer, Cham. https://doi.org/10.1007/978-3-030-23679-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23679-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23678-6

  • Online ISBN: 978-3-030-23679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics