Abstract
In this document the design of an emotion recognition system based on the EEG signals analysis based on auditory stimulation is proposed. Here, an auditory emotion recognition protocol using the International Affective Digitalized Sounds (IADS) second edition database is introduced, in which the database is divided into three groups: Negative, Positive and Neutral sonorous stimuli according to their normative mean valence and arousal ratings. The protocol was implemented through the psychopy3 stimulation libraries, and the signal acquisition is made using the Emotiv EPOC+ device through a software developed in the python environment. The stimulation protocol and the acquisition process are synchronized through pulses allowing to carryout stimulus register and to control the experiment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44(4), 695–729 (2005)
Llinás, R.R.: El cerebro y el mito del yo: el papel de las neuronas en el pensamiento y el comportamiento humanos. Editorial Norma (2003)
Liu, Y.J., Yu, M., Zhao, G., Song, J., Ge, Y., Shi, Y.: Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans. Affect. Comput. 9(4), 550–562 (2018)
Al-Nafjan, A., Hosny, M., Al-Ohali, Y., Al-Wabil, A.: Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review. Appl. Sci. 7(12), 1239 (2017)
Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)
Sourina, O., Liu, Y., Nguyen, M.K.: Real-time EEG-based emotion recognition for music therapy. J. Multimodal User Interfaces 5(1–2), 27–35 (2012)
Teo, J., Chia, J.T.: Deep neural classifiers for EEG-based emotion recognition in immersive environments. In: 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pp. 1–6. IEEE (2018)
Sanei, S.: Adaptive Processing of Brain Signals. Wiley, Hoboken (2013)
Amari, S., et al.: The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (2003)
Luck, S.J.: An Introduction to the Event-Related Potential Technique. MIT Press, Cambridge (2014)
Peirce, J., et al.: PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51, 1–9 (2019)
Bradley, M., Lang, P.J.: The International affective digitized sounds (IADS): stimuli, instruction manual and affective ratings. NIMH Center for the Study of Emotion and Attention (1999)
Bradley, M.M., Lang, P.J.: The international affective digitized sounds (IADS-2): affective ratings of sounds and instruction manual. Technical report B-3. University of Florida, Gainesville, FL (2007)
Mendez-Alegria, R., Yenny, C.C., Granollers, T.: Rueda de emociones de ginebra+: instrumento para la evaluación emocional de los usuarios mientras participan en una evaluación de sistemas interactivos. Rev. Ing. Dyna, vol. En prepara (2015)
Homan, R.W., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)
Emotiv (2019)
Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015)
Hurtado-Rincón, J.V., Martínez-Vargas, J.D., Rojas-Jaramillo, S., Giraldo, E., Castellanos-Dominguez, G.: Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 14–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47103-7_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Aguirre-Grisales, C., Gaviria-Cardenas, E., Castro-Londoño, V.H., Torres-Cardona, H.F., Rodriguez-Sotelo, J.L. (2019). Emotion Recognition System Based on EEG Signal Analysis Using Auditory Stimulation: Experimental Design. In: Stephanidis, C. (eds) HCI International 2019 - Posters. HCII 2019. Communications in Computer and Information Science, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-030-23528-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-23528-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23527-7
Online ISBN: 978-3-030-23528-4
eBook Packages: Computer ScienceComputer Science (R0)