Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Keyword Search Approach for Semantic Web Data

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11608))

  • 1565 Accesses

Abstract

More and more RDF datasets are available on the web. These datasets can be queried using the SPARQL language; to do so, one must be familiar with the query language itself, but also with the content of the dataset in terms of resources and properties in order to formulate the queries. Keyword search is an alternative way to query RDF data. In this paper, we present a keyword search approach which uses online lexical databases to bridge the terminological gap between the keywords and the dataset when searching for matching elements in the dataset. We formulate the problem of aggregating the matching elements as a Steiner tree problem and we adapt Kruskal’s algorithm to provide a solution. We also propose a ranking approach if several answers are found for a given query. We have performed some experiments on the DBpedia and the AIFB datasets to illustrate the effectiveness of our approach.

This work was funded by the National Council for Scientific Research of Lebanon (CNRS-L) and the French National Research Agency through the CAIR ANR-14-CE23-0006 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://wordnet.princeton.edu/.

References

  1. Ayvaz, S., Aydar, M.: Using RDF summary graph for keyword-based semantic searches. arXiv preprint arXiv:1707.03602 (2017)

  2. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over xml documents. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 16–27. ACM (2003)

    Google Scholar 

  3. Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF graphs-a query graph assembly approach. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 227–236. ACM (2017)

    Google Scholar 

  4. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 305–316. ACM (2007)

    Google Scholar 

  5. Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational databases. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Databases, pp. 670–681. Elsevier (2002)

    Google Scholar 

  6. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)

    Article  MathSciNet  Google Scholar 

  7. Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H.: QUIOW: a keyword-based query processing tool for RDF datasets and relational databases. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 259–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_22

    Chapter  Google Scholar 

  8. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and abstract syntax. W3C Recommendation (2004). http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

  9. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Informatica 15(2), 141–145 (1981)

    Article  MathSciNet  Google Scholar 

  10. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)

    Article  Google Scholar 

  11. Lin, X.q., Ma, Z.M., Yan, L.: RDF keyword search using a type-based summary. J. Inf. Sci. Eng. 34(2), 489–504 (2018)

    Google Scholar 

  12. Rihany, M., Kedad, Z., Lopes, S.: Keyword search over RDF graphs using WordNet. In: Big Data and Cyber-Security Intelligence (2018)

    Google Scholar 

  13. Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1135–1145. Association for Computational Linguistics (2012)

    Google Scholar 

  14. Ouksili, H., Kedad, Z., Lopes, S., Nugier, S.: Using patterns for keyword search in RDF graphs. In: EDBT/ICDT Workshops (2017)

    Google Scholar 

  15. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: a lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9_43

    Chapter  Google Scholar 

  16. Wen, Y., Jin, Y., Yuan, X.: KAT: keywords-to-SPARQL translation over RDF graphs. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 802–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_51

    Chapter  Google Scholar 

  17. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: adapting keyword query to semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_50

    Chapter  Google Scholar 

  18. Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over RDF: a graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 313–324. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Rihany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rihany, M., Kedad, Z., Lopes, S. (2019). A Keyword Search Approach for Semantic Web Data. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds) Natural Language Processing and Information Systems. NLDB 2019. Lecture Notes in Computer Science(), vol 11608. Springer, Cham. https://doi.org/10.1007/978-3-030-23281-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23281-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23280-1

  • Online ISBN: 978-3-030-23281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics