Abstract
More and more RDF datasets are available on the web. These datasets can be queried using the SPARQL language; to do so, one must be familiar with the query language itself, but also with the content of the dataset in terms of resources and properties in order to formulate the queries. Keyword search is an alternative way to query RDF data. In this paper, we present a keyword search approach which uses online lexical databases to bridge the terminological gap between the keywords and the dataset when searching for matching elements in the dataset. We formulate the problem of aggregating the matching elements as a Steiner tree problem and we adapt Kruskal’s algorithm to provide a solution. We also propose a ranking approach if several answers are found for a given query. We have performed some experiments on the DBpedia and the AIFB datasets to illustrate the effectiveness of our approach.
This work was funded by the National Council for Scientific Research of Lebanon (CNRS-L) and the French National Research Agency through the CAIR ANR-14-CE23-0006 project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ayvaz, S., Aydar, M.: Using RDF summary graph for keyword-based semantic searches. arXiv preprint arXiv:1707.03602 (2017)
Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over xml documents. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 16–27. ACM (2003)
Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF graphs-a query graph assembly approach. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 227–236. ACM (2017)
He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 305–316. ACM (2007)
Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational databases. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Databases, pp. 670–681. Elsevier (2002)
Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)
Izquierdo, Y.T., García, G.M., Menendez, E.S., Casanova, M.A., Dartayre, F., Levy, C.H.: QUIOW: a keyword-based query processing tool for RDF datasets and relational databases. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 259–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_22
Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and abstract syntax. W3C Recommendation (2004). http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Informatica 15(2), 141–145 (1981)
Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)
Lin, X.q., Ma, Z.M., Yan, L.: RDF keyword search using a type-based summary. J. Inf. Sci. Eng. 34(2), 489–504 (2018)
Rihany, M., Kedad, Z., Lopes, S.: Keyword search over RDF graphs using WordNet. In: Big Data and Cyber-Security Intelligence (2018)
Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1135–1145. Association for Computational Linguistics (2012)
Ouksili, H., Kedad, Z., Lopes, S., Nugier, S.: Using patterns for keyword search in RDF graphs. In: EDBT/ICDT Workshops (2017)
Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: a lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9_43
Wen, Y., Jin, Y., Yuan, X.: KAT: keywords-to-SPARQL translation over RDF graphs. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 802–810. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_51
Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: adapting keyword query to semantic search. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_50
Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over RDF: a graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 313–324. ACM (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rihany, M., Kedad, Z., Lopes, S. (2019). A Keyword Search Approach for Semantic Web Data. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds) Natural Language Processing and Information Systems. NLDB 2019. Lecture Notes in Computer Science(), vol 11608. Springer, Cham. https://doi.org/10.1007/978-3-030-23281-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-23281-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23280-1
Online ISBN: 978-3-030-23281-8
eBook Packages: Computer ScienceComputer Science (R0)