Abstract
More and more businesses are using social media to promote services and increase sales. This paper explores the impact of Facebook on real estate sales. First, we examine how Facebook activities are associated with real estate sales. Then, we include time lags in our analysis, because a time lag can be expected between the activates on Facebook and a resulting real estate transaction. The results suggest that: (1) The total numbers of Facebook Likes, links, and stories are positively associated with real estate sales; (2) The sentiment score of Facebook posts is negatively associated with real estate sales; (3) Time lag affects the impact of Facebook activities on real estate sales. The results reveal the predicting value of social media and the power of selected Facebook variables on real estate sales. The research findings can be used to promote sale and forecasting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
He, W., Zha, S., Li, L.: Social media competitive analysis and text mining: a case study in the pizza industry. Int. J. Inf. Manag. 33(3), 464–472 (2013)
Andzulis, J.M., Panagopoulos, N.G., Rapp, A.: A review of social media and implications for the sales process. J. Pers. Selling Sales Manag. 32(3), 305–316 (2012)
Wijnhoven, F., Plant, O.: Sentiment analysis and google trends data for predicting car sales. In: 38th International Conference on Information Systems 2017 (2017)
Kapoor, K.K., Tamilmani, K., Rana, N.P., Patil, P., Dwivedi, Y.K., Nerur, S.: Advances in social media research: past, present and future. Inf. Syst. Frontiers 20(3), 531–558 (2018)
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics, Stroudsburg, PA (2011)
Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 01, pp. 492–499. IEEE Computer Society, Washington, DC (2010)
Gruhl, D., Guha, R., Kumar, R., Novak, J., Tomkins, A.: The predictive power of online chatter. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 78–87. ACM, New York (2005)
Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)
Bartov, E., Faurel, L., Mohanram, P.S.: Can Twitter help predict firm-level earnings and stock returns? Acc. Rev. 93(3), 25–57 (2017)
Joshi, M., Das, D., Gimpel, K., Smith, N.A.: Movie reviews and revenues: an experiment in text regression. In: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 293–296. Association for Computational Linguistics, Stroudsburg, PA (2010)
Wu, L., Brynjolfsson, E.: The future of prediction: how Google searches foreshadow housing prices and sales. Economic Analysis of the Digital Economy, pp. 89–118. University of Chicago Press, Chicago (2015)
Schoen, H., Gayo-Avello, D., Takis Metaxas, P., Mustafaraj, E., Strohmaier, M., Gloor, P.: The power of prediction with social media. Internet Res. 23(5), 528–543 (2013)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends® Inf. Retrieval 2((1–2)), 1–135 (2008)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics, Stroudsburg, PA (2002)
Naik, M.V., Vasumathi, D., Siva Kumar, A.P.: An enhanced unsupervised learning approach for sentiment analysis using extraction of Tri-Co-Occurrence words phrases. In: Bhateja, V., Tavares, J.M.R.S., Rani, B.P., Prasad, V.K., Raju, K.S. (eds.) Proceedings of the Second International Conference on Computational Intelligence and Informatics. AISC, vol. 712, pp. 17–26. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8228-3_3
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC 2010), pp. 1320–1326. European Languages Resources Association (2010)
Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)
Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016 task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International Workshop on Semantic Evaluation, pp. 1–18, Association for Computational Linguistics (2016)
Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 959–962. ACM, New York (2015)
Saif, H., He, Y., Fernandez, M., Alani, H.: Contextual semantics for sentiment analysis of Twitter. Inf. Proc. Manag. 52(1), 5–19 (2016)
Pandey, A.C., Rajpoot, D.S., Saraswat, M.: Twitter sentiment analysis using hybrid cuckoo search method. Inf. Proc. Manag. 53(4), 764–779 (2017)
Ortigosa, A., Martín, J.M., Carro, R.M.: Sentiment analysis in Facebook and its application to e-learning. Comput. Hum. Behav. 31, 527–541 (2014)
Meire, M., Ballings, M., Van den Poel, D.: The added value of social media data in B2B customer acquisition systems: A real-life experiment. Decis. Support Syst. 104, 26–37 (2017)
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)
Poecze, F., Ebster, C., Strauss, C.: Social media metrics and sentiment analysis to evaluate the effectiveness of social media posts. Procedia Comput. Sci. 130((C)), 660–666 (2018)
Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42(24), 9603–9611 (2015)
Fang, X., Zhan, J.: Sentiment analysis using product review data. J. Big Data 2(1), 5 (2015)
Boldt, L.C., et al.: Forecasting nike’s sales using Facebook data. In: 2016 IEEE International Conference on Big Data, pp. 2447–2456. IEEE (2016)
Lee, K., Lee, B., Oh, W.: Thumbs up, sales up? the contingent effect of Facebook likes on sales performance in social commerce. J. Manag. Inf. Syst. 32(4), 109–143 (2015)
Mazzucchelli, A., Chierici, R., Ceruti, F., Chiacchierini, C., Godey, B., Pederzoli, D.: Affecting brand loyalty intention: the effects of UGC and shopping searches via Facebook. J. Glob. Fashion Mark. 9(3), 270–286 (2018)
Geetha, M., Singha, P., Sinha, S.: Relationship between customer sentiment and online customer ratings for hotels-an empirical analysis. Tourism Manag. 61, 43–54 (2017)
Dini, L., Bittar, A., Robin, C., Segond, F., Montaner, M.: SOMA: The Smart Social Customer Relationship Management Tool: Handling Semantic Variability of Emotion Analysis With Hybrid Technologies. Sentiment Analysis in Social Networks, pp. 197–209 (2017)
He, W., Chen, Y.: Using blog mining as an analytical method to study the use of social media by small businesses. J. Inf. Technol. Case Appl. Res. 16(2), 91–104 (2014)
Pedhazur, E.J., Kerlinger, F.N.: Multiple Regression in Behavioral Research. Holt, Rinehart and Winston, New York (1973)
Bing, L., Chan, K.C.C., Ou, C.: Public sentiment analysis in Twitter data for prediction of a company’s stock price movements. In: 2014 IEEE 11th International Conference on E-Business Engineering, pp. 232–239. IEEE (2014)
Kotler, P.J.: Marketing Management: Analysis, Planning, Implementation, and Control, 8th edn. Prentice Hall, Englewood Cliffs (1994)
Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford coreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60. Association for Computational Linguistics, Stroudsburg, PA (2014)
Myers, R.H., Myers, R.H.: Classical and Modern Regression With Applications, vol. 2. Duxbury Press, Belmont (1990)
Studenmund, A.H.: Using Econometrics: A Practical Guide (5 th). Pearson Education Inc, Boston (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, H., Ma, Z., Chong, D., He, W. (2019). Impact of Social Media on Real Estate Sales. In: Xu, J., Zhu, B., Liu, X., Shaw, M., Zhang, H., Fan, M. (eds) The Ecosystem of e-Business: Technologies, Stakeholders, and Connections. WEB 2018. Lecture Notes in Business Information Processing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-030-22784-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-22784-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22783-8
Online ISBN: 978-3-030-22784-5
eBook Packages: Computer ScienceComputer Science (R0)