Nothing Special   »   [go: up one dir, main page]

Skip to main content

General Limit Value for Stationary Nash Equilibrium

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11548))

  • 941 Accesses

Abstract

We analyze the uniform asymptotics of the equilibrium value (as a function of initial state) in the case when its payoffs are averaged with respect to a density that depends on some scale parameter and this parameter tends to zero; for example, the Cesàro and Abel averages as payoffs for the uniform and the exponential densities, respectively. We also investigate the robustness of this asymptotics of the equilibrium value with respect to the choice of distribution when its scale parameter is small enough. We establish the class of densities such that the existence of the asymptotics of the equilibrium value for some density guarantees the same asymptotics for a piecewise-continuous density; in particular, this class includes the uniform, exponential, and rational densities. By reducing the general n-person dynamic games to mappings that assigns to each payoff its corresponding equilibrium value, we gain an ability to consider dynamic games in continuous and discrete time, both in deterministic and stochastic settings.

Supported by the Russian Science Foundation (project no. 17-11-01093).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Averboukh, Y.V.: Universal Nash equilibrium strategies for differential games. J. Dyn. Contrl Syst. 21(3), 329–350 (2015). https://doi.org/10.1007/s10883-014-9224-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M.: On differential games with long-time-average cost. In: Pourtallier, O., Gaitsgory, V., Bernhard, P. (eds.) Advances in Dynamic Games and Their Applications. Annals of the International Society of Dynamic Games, pp. 3–18. Birkhäuser, Boston (2009). https://doi.org/10.1007/978-0-8176-4834-3_1

    Chapter  MATH  Google Scholar 

  3. Bewley, T., Kohlberg, E.: The asymptotic theory of stochastic games. Math. Oper. Res. 1, 197–208 (1976). https://doi.org/10.1287/moor.1.3.197

    Article  MathSciNet  MATH  Google Scholar 

  4. Cannarsa, P., Quincampoix, M.: Vanishing discount limit and nonexpansive optimal control and differential games. SIAM J. Control Optim. 53(4), 1789–1814 (2015). https://doi.org/10.1137/130945429

    Article  MathSciNet  MATH  Google Scholar 

  5. Gaitsgory, V.: Application of the averaging method for constructing suboptimal solutions of singularly perturbed problems of optimal control. Automat. Rem. Contr+ 46, 1081–1088 (1985)

    Google Scholar 

  6. Gaitsgory, V., Parkinson, A., Shvartsman, I.: Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete Continuous Dyn. Syst. Ser. B 29(4), 1743–1767 (2019). https://doi.org/10.3934/dcdsb.2018235

    Article  MathSciNet  MATH  Google Scholar 

  7. Jaśkiewicz, A., Nowak, A.S.: Non-zero-sum stochastic games. In: Başar, T., Zaccour, G. (eds.) Handbook of Dynamic Game Theory, pp. 1–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27335-8_33-1

    Chapter  Google Scholar 

  8. Khlopin, D.V.: On asymptotic value for dynamic games with saddle point. In: Bonnet, C., Pasik-Duncan, B., Ozbay, H., Zhang, Q. (eds.) Proceedings of the Conference on Control and Its Applications, pp. 282–289. SIAM (2015). https://doi.org/10.1137/1.9781611974072.39

    Chapter  Google Scholar 

  9. Khlopin, D.V.: Uniform Tauberian theorem for differential games. Automat. Rem. Contr+ 77(4), 734–750 (2016). https://doi.org/10.1134/S0005117916040172

    Article  MathSciNet  Google Scholar 

  10. Khlopin, D.V.: On uniform Tauberian theorems for dynamic games. Mat. Sb. 209(1), 127–150 (2018). https://doi.org/10.1070/SM8785

    Article  MathSciNet  Google Scholar 

  11. Khlopin, D.V.: Tauberian theorem for value functions. Dyn. Games Appl. 8(2), 401–422 (2018). https://doi.org/10.1007/s13235-017-0227-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Khlopin, D.V.: On Tauberian theorem for stationary Nash equilibria. Optim. Lett. (published online 22 October 2018). https://doi.org/10.1007/s11590-018-1345-8

  13. Khlopin, D.V.: Value asymptotics in dynamic games on large horizons. Algebra Anal. 31(1), 211–245 (2019). (In Russian)

    MathSciNet  Google Scholar 

  14. Lehrer, E., Sorin, S.: A uniform Tauberian theorem in dynamic programming. Math. Oper. Res. 17(2), 303–307 (1992). https://doi.org/10.1287/moor.17.2.303

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X., Quincampoix, M., Renault, J.: Limit value for optimal control with general means. Discrete Continuous Dyn. Syst. Ser. A 36, 2113–2132 (2016). https://doi.org/10.3934/dcds.2016.36.2113

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi Equations (1986, unpublished work)

    Google Scholar 

  17. Maliar, L., Maliar, S.: Ruling out multiplicity of smooth equilibria in dynamic games: a hyperbolic discounting example. Dyn. Games Appl. 6(2), 243–261 (2016). https://doi.org/10.1007/s13235-015-0177-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Mertens, J.F., Neyman, A.: Stochastic games. Int. J. Game Theory 10(2), 53–66 (1981). https://doi.org/10.1007/BF01769259

    Article  MathSciNet  MATH  Google Scholar 

  19. Monderer, D., Sorin, S.: Asymptotic properties in dynamic programming. Int. J. Game Theory 22, 1–11 (1993). https://doi.org/10.1007/BF01245566

    Article  MathSciNet  MATH  Google Scholar 

  20. Oliu-Barton, M., Vigeral, G.: A uniform Tauberian theorem in optimal control. In: Cardaliaguet, P., Cressman, R. (eds.) Advances in Dynamic Games. Annals of the International Society of Dynamic Games, vol. 12, pp. 199–215. Birkhäuser, Boston (2013). https://doi.org/10.1007/978-0-8176-8355-9_10

    Chapter  MATH  Google Scholar 

  21. Renault, J.: General limit value in dynamic programming. J. Dyn. Games 1(3), 471–484 (2013). https://doi.org/10.3934/jdg.2014.1.471

    Article  MathSciNet  MATH  Google Scholar 

  22. Solan, E.: Acceptable strategy profiles in stochastic games. Games Econ. Behav. 108, 523–540 (2018). https://doi.org/10.1016/j.geb.2017.01.011

    Article  MathSciNet  MATH  Google Scholar 

  23. Sorger, G.: Competitive dynamic advertising: a modification of the case game. J. Econ. Dyn. Control 13, 55–80 (1989). https://doi.org/10.1016/0165-1889(89)90011-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Ziliotto, B.: A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games. Math. Oper. Res. 41(4), 1522–1534 (2016). https://doi.org/10.1287/moor.2016.0788

    Article  MathSciNet  MATH  Google Scholar 

  25. Ziliotto, B.: Tauberian theorems for general iterations of operators: applications to zero-sum stochastic games. Games Econ. Behav. 108, 486–503 (2018). https://doi.org/10.1016/j.geb.2018.01.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Khlopin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khlopin, D. (2019). General Limit Value for Stationary Nash Equilibrium. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics