Abstract
Given a graph \(G=(V,E)\) with edge weights and a subset \(R\subseteq E\) of required edges, the NP-hard Rural Postman Problem (RPP) is to find a closed walk of minimum total weight containing all edges of R. The number b of vertices incident to an odd number of edges of R and the number c of connected components formed by the edges in R are both bounded from above by the number of edges that has to be traversed additionally to the required ones. We show how to reduce any RPP instance I to an RPP instance \(I'\) with \(2b+O(c/\varepsilon )\) vertices in \(O(n^3)\) time so that any \(\alpha \)-approximate solution for \(I'\) gives an \(\alpha (1+\varepsilon )\)-approximate solution for I, for any \(\alpha \ge 1\) and \(\varepsilon >0\). That is, we provide a polynomial-size approximate kernelization scheme (PSAKS). We make first steps towards a PSAKS with respect to the parameter c.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All omitted proofs can be found in the full version of this paper, available on arXiv: https://arxiv.org/abs/1812.10131.
- 2.
That is, \(T_i\) is the folklore 2-approximation of a Steiner tree with terminals \(B_i\) in \(G\langle R_i\rangle \).
References
Belenguer, J.M., Benavent, E., Lacomme, P., Prins, C.: Lower and upper bounds for the mixed capacitated arc routing problem. Comput. Oper. Res. 33(12), 3363–3383 (2006)
van Bevern, R., Fluschnik, T., Tsidulko, O.Yu.: Parameterized algorithms and data reduction for safe convoy routing. In: Proceedings of 18th ATMOS, OASIcs, vol. 65, pp. 10:1–10:19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)
van Bevern, R., Hartung, S., Nichterlein, A., Sorge, M.: Constant-factor approximations for capacitated arc routing without triangle inequality. Oper. Res. Lett. 42(4), 290–292 (2014)
van Bevern, R., Komusiewicz, C., Sorge, M.: A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: theory and experiments. Networks 70(3), 262–278 (2017)
van Bevern, R., Niedermeier, R., Sorge, M., Weller, M.: Complexity of arc routing problems. In: Arc Routing: Problems, Methods, and Applications, MOS-SIAM Series on Optimization, vol. 20. SIAM (2014)
Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated arc routing problem. Comput. Oper. Res. 35(4), 1112–1126 (2008)
Corberán, Á., Laporte, G. (eds.): Arc Routing: Problems, Methods, and Applications. SIAM, Philadelphia (2014)
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient algorithms for Eulerian extension and Rural Postman. SIAM J. Discrete Math. 27(1), 75–94 (2013)
Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)
Eiben, E., Hermelin, D., Ramanujan, M.S.: Lossy kernels for hitting subgraphs. In: Proceedings of 42nd MFCS, LIPIcs, vol. 83, pp. 67:1–67:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2017)
Eiben, E., Kumar, M., Mouawad, A.E., Panolan, F., Siebertz, S.: Lossy kernels for connected dominating set on sparse graphs. In: Proceedings of 35th STACS, LIPIcs, vol. 96, pp. 29:1–29:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)
Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part II: The Rural Postman Problem. Oper. Res. 43(3), 399–414 (1995)
Etscheid, M., Kratsch, S., Mnich, M., Röglin, H.: Polynomial kernels for weighted problems. J. Comput. Syst. Sci. 84, 1–10 (2017)
Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approximation via fidelity preserving transformations. J. Comput. Syst. Sci. 93, 30–40 (2018)
Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)
Ghiani, G., Improta, G.: The laser-plotter beam routing problem. J. Oper. Res. Soc. 52(8), 945–951 (2001)
Ghiani, G., Laporte, G.: Eulerian location problems. Networks 34(4), 291–302 (1999)
Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)
Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines: a case study. Z. Oper. Res. 35(1), 61–84 (1991)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)
Gutin, G., Wahlström, M., Yeo, A.: Rural Postman parameterized by the number of components of required edges. J. Comput. Syst. Sci. 83(1), 121–131 (2017)
Hermelin, D., Kratsch, S., Sołtys, K., Wahlström, M., Wu, X.: A completeness theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015)
Jansen, K.: Bounds for the general capacitated routing problem. Networks 23(3), 165–173 (1993)
Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)
Kratsch, S.: Recent developments in kernelization: A survey. Bull. EATCS 113 (2014)
Krithika, R., Majumdar, D., Raman, V.: Revisiting connected vertex cover: FPT algorithms and lossy kernels. Theor. Comput. Syst. 62(8), 1690–1714 (2018)
Krithika, R., Misra, P., Rai, A., Tale, P.: Lossy kernels for graph contraction problems. In: Proceedings 36th FSTTCS, LIPIcs, vol. 65, pp. 23:1–23:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2016)
Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings 49th STOC, pp. 224–237. ACM (2017)
Marx, D., Végh, L.A.: Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation. ACM Trans. Algorithms 11(4), 27:1–27:24 (2015)
Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)
Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: From few components to an Eulerian graph by adding arcs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_28
Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A new view on Rural Postman based on Eulerian extension and matching. J. Discrete Algorithms 16, 12–33 (2012)
Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 22(3), 329–337 (1985)
Wøhlk, S.: An approximation algorithm for the capacitated arc routing problem. Open Oper. Res. J. 2, 8–12 (2008)
Acknowledgments
René van Bevern and Oxana Yu. Tsidulko are supported by the Russian Foundation for Basic Research, project 18-501-12031 NNIO_a, and by the Ministry of Science and Higher Education of the Russian Federation under the 5-100 Excellence Programme. Till Fluschnik is supported by the German Research Foundation, project TORE (NI 369/18).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
van Bevern, R., Fluschnik, T., Tsidulko, O.Y. (2019). On \((1+\varepsilon )\)-approximate Data Reduction for the Rural Postman Problem. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-22629-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22628-2
Online ISBN: 978-3-030-22629-9
eBook Packages: Computer ScienceComputer Science (R0)