Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulating the Behaviour of Choquet-Like (pre) Aggregation Functions for Image Resizing in the Pooling Layer of Deep Learning Networks

  • Conference paper
  • First Online:
Fuzzy Techniques: Theory and Applications (IFSA/NAFIPS 2019 2019)

Abstract

The data volume expansion has generated the need to develop efficient knowledge extraction techniques. Most problems that are processed by these techniques have complex information to be identified and use different machine learning methods, such as Convolutional and Deep Learning Network. These networks may use a variety of aggregation functions to resize images in the pooling layer. This paper presents a study of the application of aggregation functions based on the generalizations of the Choquet integral, namely, the novel Choquet-like (pre) aggregation functions, in image dimensional reduction, simulating the pooling layer of a Deep Learning Networks. This paper is the natural evolution of the initial study where only the standard Choquet integral was applied. We compare the behaviour of such functions with the usual ones used in the literature, namely, the maximum and the arithmetic mean. A quantitative evaluation is done over an image dataset by using different image quality measures to compare the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Normsand Copulas. World Scientific, Singapore (2006)

    Book  Google Scholar 

  2. Jurio, A., Pagola, M., Mesiar, R., Beliakov, G., Bustince, H.: Image magnification using interval information. IEEE Trans. Image Process. 20(11), 3112–3123 (2011)

    Article  MathSciNet  Google Scholar 

  3. Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)

    Article  Google Scholar 

  4. Beliakov, G., Bustince, H., Paternain, D.: Image reduction using means on discrete product lattices. IEEE Trans. Image Process. 21(3), 1070–1083 (2012)

    Article  MathSciNet  Google Scholar 

  5. Beliakov, G., Sola, H.B., Sanchez, T.C.: A Practical Guide to Averaging Functions. Springer, Cham (2016)

    Book  Google Scholar 

  6. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chen, H., Chiang, R., Storey, V.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

    Article  Google Scholar 

  8. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)

    Article  MathSciNet  Google Scholar 

  9. Jaswal, D., Vishvanathan, S., Kp, S.: Image classification using convolutional neural networks. Int. J. Sci. Eng. Res. 5, 1661–1668 (2014)

    Google Scholar 

  10. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends® Signal Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dias, C.A., Bueno, J.C.S., Borges, E.N., Botelho, S.S.C., Dimuro, G.P., Lucca, G., Fernandéz, J., Bustince, H., Drews Jr., P.L.J.: Using the Choquet integral in the pooling layer in deep learning networks. In: Fuzzy Information Processing, pp. 144–154. Springer, Cham (2018). (Best Paper Awards - 2nd place at NAFIPS 2018)

    Google Scholar 

  12. Dimuro, G.P., Lucca, G., Sanz, J.A., Bustince, H., Bedregal, B.: CMin-Integral: a Choquet-like aggregation function based on the minimum t-norm for applications to fuzzy rule-based classification systems. In: Aggregation Functions in Theory and in Practice, pp. 83–95. Springer, Cham (2018)

    Google Scholar 

  13. Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  14. Fukushima, K.: Neocognitron-a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 15, 106–115 (1981)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Hamel, P., Lemieux, S., Bengio, Y., Eck, D.: Temporal pooling and multiscale learning for automatic annotation and ranking of music audio, pp. 729–734 (2011)

    Google Scholar 

  18. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat. 33(2), 482–497 (1962)

    Article  MathSciNet  Google Scholar 

  19. Ishibuchi, H., Nakashima, T., Nii, M.: Pattern classification with linguistic rules. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, vol. 220, pp. 1077–1095 (2008)

    Google Scholar 

  20. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  21. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1746–1751 (2014)

    Google Scholar 

  22. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht (2000)

    Book  Google Scholar 

  23. Lucca, G., Dimuro, G.P., Fernandez, J., Bustince, H., Bedregal, B., Sanz, J.A.: Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named \(c_{F_1F_2}\)-integrals. IEEE Trans. Fuzzy Syst. 27(1), 124–134 (2019)

    Article  Google Scholar 

  24. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017)

    Article  Google Scholar 

  25. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: \(C_{F}\)-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)

    Article  Google Scholar 

  26. Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Bustince, A.K.R.H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016)

    Article  Google Scholar 

  27. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: 23rd British Machine Vision Conference (2012)

    Google Scholar 

  28. Mizoguchi, T., Ishii, A., Nakamura, H., Inoue, T., Takamatsu, H.: Lidar-based individual tree species classification using convolutional neural network. In: Videometrics, Range Imaging, and Applications XIV, vol. 10332, p. 103320O. International Society for Optics and Photonics (2017)

    Google Scholar 

  29. Morettin, P.A., Bussab, W.O.: Estatística Básica. Editora Saraiva (2017)

    Google Scholar 

  30. Paternain, D., Fernández, J., Bustince, H., Mesiar, R., Beliakov, G.: Construction of image reduction operators using averaging aggregation functions. Fuzzy Sets Syst. 261, 87–111 (2015)

    Article  MathSciNet  Google Scholar 

  31. Scherer, D., Muller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: 20th International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 92–101 (2010)

    Chapter  Google Scholar 

  32. Yu, D., Wang, H., Chen, P., Wei, Z.: Mixed pooling for convolutional neural networks. In: International Conference on Rough Sets and Knowledge Technology, pp. 364–375 (2014)

    Chapter  Google Scholar 

Download references

Acknowledgments

Supported by CAPES/Brasil, CNPq/Brazil (proc. 305882/2016-3), FAPERGS (TO 17/2551-0000872-3) and the Spanish Ministry of Science and Technology (under project TIN2016-77356-P (AEI/FEDER, UE)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dias, C. et al. (2019). Simulating the Behaviour of Choquet-Like (pre) Aggregation Functions for Image Resizing in the Pooling Layer of Deep Learning Networks. In: Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V. (eds) Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-21920-8_21

Download citation

Publish with us

Policies and ethics