Nothing Special   »   [go: up one dir, main page]

Skip to main content

A DCA-Based Approach for Outage Constrained Robust Secure Power-Splitting SWIPT MISO System

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 991))

Included in the following conference series:

  • 1898 Accesses

Abstract

This paper studies the worst-case secrecy rate maximization problem under the total transmit power, the energy harvesting and the outage probability requirements. The problem is nonconvex, thus, hard to solve. Exploiting the special structure of the problem, we first reformulate as a DC (Difference of Convex functions) program. Then, we develop an efficient approach based on DCA (DC Algorithm) and alternating method for solving the problem. The computational results confirm the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0. Online: http://cvxr.com/cvx, (2012).

References

  1. Chen, D., He, Y., Lin, X., Zhao, R.: Both worst-case and chance-constrained robust secure SWIPT in MISO interference channels. IEEE Trans. Inf. Forensics Secur. 13(2), 306–317 (2018)

    Google Scholar 

  2. Chu, Z., Zhu, Z., Hussein, J.: Robust optimization for an-aided transmission and power splitting for secure MISO SWIPT system. IEEE Commun. Lett. 20(8), 1571–1574 (2016)

    Google Scholar 

  3. Feng, Y., Yang, Z., Zhu, W., Li, Q., Lv, B.: Robust cooperative secure beamforming for simultaneous wireless information and power transfer in amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 66(3), 2354–2366 (2017)

    Google Scholar 

  4. Gharavol, E.A., Liang, Y., Mouthaan, K.: Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state information. IEEE Trans. Veh. Technol. 59(6), 2852–2860 (2010)

    Google Scholar 

  5. Khandaker, M.R.A., Wong, K., Zhang, Y., Zheng, Z.: Probabilistically robust SWIPT for secrecy misome systems. IEEE Trans. Inf. Forensics Secur. 12(1), 211–226 (2017)

    Google Scholar 

  6. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K., Schober, R.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)

    Google Scholar 

  7. Le, T.A., Vien, Q., Nguyen, H.X., Ng, D.W.K., Schober, R.: Robust chance-constrained optimization for power-efficient and secure SWIPT systems. IEEE Trans. Green Commun. Netw. 1(3), 333–346 (2017)

    Google Scholar 

  8. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Dc programming and DCA for general dc programs. In: Advanced Computational Methods for Knowledge Engineering, pp. 15–35 (2014)

    Google Scholar 

  9. Le Thi, H.A., Le, H.M., Phanand, B.,Tran, D.N.: A DCA-like algorithm and its accelerated version with application in data visualization (2018). CoRR arXiv:abs/1806.09620

  10. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with dc models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1), 23–46 (2005)

    Google Scholar 

  11. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)

    Google Scholar 

  12. Lei, H., Ansari, I.S., Pan, G., Alomair, B., Alouini, M.: Secrecy capacity analysis over \(\alpha - \mu \) fading channels. IEEE Commun. Lett. 21(6), 1445–1448 (2017)

    Google Scholar 

  13. Li, Q., Ma, W.: Secrecy rate maximization of a MISO channelwith multiple multi-antenna eavesdroppers via semidefinite programming. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3042–3045 (2010)

    Google Scholar 

  14. Ma, S., Hong, M., Song, E., Wang, X., Sun, D.: Outage constrained robust secure transmission for MISO wiretap channels. IEEE Trans. Wirel. Commun. 13(10), 5558–5570 (2014)

    Google Scholar 

  15. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to D.C. programming: theory, algorithm and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    Google Scholar 

  16. Pham Dinh, T., Le Thi, H.A.: D.C. optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)

    Google Scholar 

  17. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Transactions on Computational Intelligence XIII. pp. 1–37. Springer, Heidelberg (2014)

    Google Scholar 

  18. Rashid, U., Tuan, H.D., Kha, H.H., Nguyen, H.H.: Joint optimization of source precoding and relay beamforming in wireless mimo relay networks. IEEE Trans. Commun. 62(2), 488–499 (2014)

    Google Scholar 

  19. Tian, M., Huang, X., Zhang, Q., Qin, J.: Robust an-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett. 22(6), 723–727 (2015)

    Google Scholar 

  20. Wang, K., So, A.M., Chang, T., Ma, W., Chi, C.: Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690–5705 (2014)

    Google Scholar 

  21. Wang, S., Wang, B.: Robust secure transmit design in mimo channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett. 22(11), 2147–2151 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Anh Nguyen .

Editor information

Editors and Affiliations

Appendix A

Appendix A

First, we transform the EH constraint. According to [4], we rewrite \(\vert \mathbf h _{jk}^H\mathbf w _j\vert ^2 = \mathbf w _j^H (\overline{\mathbf{H }}_{jk} + \mathbf d _{jk})\mathbf w _j,\) where \(\overline{\mathbf{H }}_{jk} = \overline{\mathbf{h }}_{jk}\overline{\mathbf{h }}_{jk}^H, \ \mathbf d _{jk} = \overline{\mathbf{h }}_{jk}\varDelta \mathbf h _{jk}^H + \varDelta \mathbf h _{jk} \overline{\mathbf{h }}_{jk}^H + \varDelta \mathbf h _{jk}\varDelta \mathbf h _{jk}^H \). By applying the triangle inequality and the Cauchy-Schwarz inequality, we have

$$\begin{aligned} \Vert \mathbf d _{jk} \Vert \le \Vert \overline{\mathbf{h }}_{jk}\Vert \Vert \varDelta \mathbf h _{jk}^H\Vert +\Vert \varDelta \mathbf h _{jk}\Vert \Vert \overline{\mathbf{h }}_{jk}^H\Vert +\Vert \varDelta \mathbf h _{jk}\Vert \Vert \varDelta \mathbf h _{jk}^H\Vert \\ \Vert \mathbf d _{jk} \Vert \le \Vert \mathbf Q _{jk} \Vert ^{-1}+ 2 \Vert \overline{\mathbf{h }}_{jk} \Vert \sqrt{\Vert \mathbf Q _{jk} \Vert ^{-1}} = \epsilon _{jk} \Rightarrow - \epsilon _{jk} {{\,\mathrm{{\mathbf I}}\,}}_N \le \mathbf D _{jk} \le \epsilon _{jk} {{\,\mathrm{{\mathbf I}}\,}}_N, \\ {{\,\mathrm{thus}\,}}, \ {{\,\mathrm{Tr}\,}}\left[ (\overline{\mathbf{H }}_{jk} - \epsilon _{jk} {{\,\mathrm{{\mathbf I}}\,}}_N) \mathbf W _j\right] \le \vert \mathbf h _{jk}^H\mathbf w _j\vert ^2 = {{\,\mathrm{Tr}\,}}\left[ (\overline{\mathbf{H }}_{jk} + \mathbf d _{jk}) \mathbf W _j\right] . \end{aligned}$$

Therefore, the EH constraint is recast as \( \sum _{j=1}^K {{\,\mathrm{Tr}\,}}(\overline{\mathbf{H }}_{jk} \mathbf W _j - \epsilon _{jk} \mathbf W _j) \ge \frac{E_k}{(1-\rho _k)}. \)

$$\begin{aligned} {{\,\mathrm{Next,}\,}} \ R_{I,k} \le \log \Big (1+\frac{\rho _k \mathbf h _{kk}^H\mathbf W _k\mathbf h _{kk}}{\rho _k\sum _{j\ne k}{} \mathbf h _{jk}^H\mathbf W _j\mathbf h _{jk}+\rho _k\sigma _{1k}^2+\sigma _{2k}^2}\Big ) \end{aligned}$$
(22)

is reformulated similarly to [1] as

$$\begin{aligned} \left\{ \begin{matrix} \beta _k \ge \dfrac{1}{\rho _k}, \ \sum _{j=1}^K f_{jk} +\sigma _{1k}^2+ \beta _k\sigma _{2k}^2 \ge a_k, \ \sum _{j\ne k}f_{jk} +\sigma _{1k}^2+ \beta _k\sigma _{2k}^2 \le b_k, \\ 0 < u \le a_k, \ v \ge b_k > 0, \ \lambda _{jk} \ge 0, \ x \ge R_{I,k}, \ 2^x v - u \le 0,\\ \mathbf h _{kk}^H\mathbf W _k\mathbf h _{kk} \ge f_{kk} \Leftrightarrow \begin{bmatrix}\lambda _{kk} \mathbf Q +\mathbf W _k &{} \mathbf W _k\overline{\mathbf{h }}_{kk} \\ \overline{\mathbf{h }}_{kk}^H\mathbf W _k &{}\overline{\mathbf{h }}_{kk}^H\mathbf W _k\overline{\mathbf{h }}_{kk} - f_{kk} - \lambda _{kk} \end{bmatrix} \succeq \mathbf 0 , \\ \mathbf h _{jk}^H\mathbf W _k\mathbf h _{jk} \le f_{jk} \Leftrightarrow \begin{bmatrix}\lambda _{jk} \mathbf Q -\mathbf W _j &{} -\mathbf W _j\overline{\mathbf{h }}_{jk} \\ -\overline{\mathbf{h }}_{jk}^H\mathbf W _j &{}-\overline{\mathbf{h }}_{jk}^H\mathbf W _j\overline{\mathbf{h }}_{jk} + f_{jk} - \lambda _{jk} \end{bmatrix} \succeq \mathbf 0 , \ j\ne k. \end{matrix}\right. \end{aligned}$$

The relaxed constraints hold with equalities at the optimal solution [1].

By using slack variables \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \), the outage constraint is transformed into

$$\begin{aligned} \left\{ \begin{matrix} -\ln p_k - \xi _k \sigma _{3k}^2 - \sum _{j\ne k} \ln ( 1 + \xi _k{{\,\mathrm{Tr}\,}}(\mathbf G _{jk}{} \mathbf W _j) \le 0 , \\ \ {{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k) \le s_k, \ 0< s_k, \ 0 <\xi _k, \\ \xi _k \le \frac{2^{R_{I,k} - R_k} - 1}{s_k} \Leftrightarrow R_k - R_{I,k}+\log _{2}(1+\xi _k s_k) \le 0. \end{matrix}\right. \end{aligned}$$

At the optimum, \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \) at optimum, if not, we can increase \(R_k\). In addition, \({{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k) = s_k\) at the optimum, otherwise, we can decrease s leading to increase \(R_k\) due to \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \).

Such that, if the relaxed constraints do not hold with equalities at the optimum, the objective function can be further increased.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, P.A., Le Thi, H.A. (2020). A DCA-Based Approach for Outage Constrained Robust Secure Power-Splitting SWIPT MISO System. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_30

Download citation

Publish with us

Policies and ethics