Abstract
This paper studies the worst-case secrecy rate maximization problem under the total transmit power, the energy harvesting and the outage probability requirements. The problem is nonconvex, thus, hard to solve. Exploiting the special structure of the problem, we first reformulate as a DC (Difference of Convex functions) program. Then, we develop an efficient approach based on DCA (DC Algorithm) and alternating method for solving the problem. The computational results confirm the efficiency of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0. Online: http://cvxr.com/cvx, (2012).
References
Chen, D., He, Y., Lin, X., Zhao, R.: Both worst-case and chance-constrained robust secure SWIPT in MISO interference channels. IEEE Trans. Inf. Forensics Secur. 13(2), 306–317 (2018)
Chu, Z., Zhu, Z., Hussein, J.: Robust optimization for an-aided transmission and power splitting for secure MISO SWIPT system. IEEE Commun. Lett. 20(8), 1571–1574 (2016)
Feng, Y., Yang, Z., Zhu, W., Li, Q., Lv, B.: Robust cooperative secure beamforming for simultaneous wireless information and power transfer in amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 66(3), 2354–2366 (2017)
Gharavol, E.A., Liang, Y., Mouthaan, K.: Robust downlink beamforming in multiuser MISO cognitive radio networks with imperfect channel-state information. IEEE Trans. Veh. Technol. 59(6), 2852–2860 (2010)
Khandaker, M.R.A., Wong, K., Zhang, Y., Zheng, Z.: Probabilistically robust SWIPT for secrecy misome systems. IEEE Trans. Inf. Forensics Secur. 12(1), 211–226 (2017)
Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K., Schober, R.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)
Le, T.A., Vien, Q., Nguyen, H.X., Ng, D.W.K., Schober, R.: Robust chance-constrained optimization for power-efficient and secure SWIPT systems. IEEE Trans. Green Commun. Netw. 1(3), 333–346 (2017)
Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Dc programming and DCA for general dc programs. In: Advanced Computational Methods for Knowledge Engineering, pp. 15–35 (2014)
Le Thi, H.A., Le, H.M., Phanand, B.,Tran, D.N.: A DCA-like algorithm and its accelerated version with application in data visualization (2018). CoRR arXiv:abs/1806.09620
Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with dc models of real world nonconvex optimization problems. Ann. Oper. Res. 133(1), 23–46 (2005)
Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)
Lei, H., Ansari, I.S., Pan, G., Alomair, B., Alouini, M.: Secrecy capacity analysis over \(\alpha - \mu \) fading channels. IEEE Commun. Lett. 21(6), 1445–1448 (2017)
Li, Q., Ma, W.: Secrecy rate maximization of a MISO channelwith multiple multi-antenna eavesdroppers via semidefinite programming. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3042–3045 (2010)
Ma, S., Hong, M., Song, E., Wang, X., Sun, D.: Outage constrained robust secure transmission for MISO wiretap channels. IEEE Trans. Wirel. Commun. 13(10), 5558–5570 (2014)
Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to D.C. programming: theory, algorithm and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)
Pham Dinh, T., Le Thi, H.A.: D.C. optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)
Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Transactions on Computational Intelligence XIII. pp. 1–37. Springer, Heidelberg (2014)
Rashid, U., Tuan, H.D., Kha, H.H., Nguyen, H.H.: Joint optimization of source precoding and relay beamforming in wireless mimo relay networks. IEEE Trans. Commun. 62(2), 488–499 (2014)
Tian, M., Huang, X., Zhang, Q., Qin, J.: Robust an-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett. 22(6), 723–727 (2015)
Wang, K., So, A.M., Chang, T., Ma, W., Chi, C.: Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690–5705 (2014)
Wang, S., Wang, B.: Robust secure transmit design in mimo channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett. 22(11), 2147–2151 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A
Appendix A
First, we transform the EH constraint. According to [4], we rewrite \(\vert \mathbf h _{jk}^H\mathbf w _j\vert ^2 = \mathbf w _j^H (\overline{\mathbf{H }}_{jk} + \mathbf d _{jk})\mathbf w _j,\) where \(\overline{\mathbf{H }}_{jk} = \overline{\mathbf{h }}_{jk}\overline{\mathbf{h }}_{jk}^H, \ \mathbf d _{jk} = \overline{\mathbf{h }}_{jk}\varDelta \mathbf h _{jk}^H + \varDelta \mathbf h _{jk} \overline{\mathbf{h }}_{jk}^H + \varDelta \mathbf h _{jk}\varDelta \mathbf h _{jk}^H \). By applying the triangle inequality and the Cauchy-Schwarz inequality, we have
Therefore, the EH constraint is recast as \( \sum _{j=1}^K {{\,\mathrm{Tr}\,}}(\overline{\mathbf{H }}_{jk} \mathbf W _j - \epsilon _{jk} \mathbf W _j) \ge \frac{E_k}{(1-\rho _k)}. \)
is reformulated similarly to [1] as
The relaxed constraints hold with equalities at the optimal solution [1].
By using slack variables \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \), the outage constraint is transformed into
At the optimum, \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \) at optimum, if not, we can increase \(R_k\). In addition, \({{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k) = s_k\) at the optimum, otherwise, we can decrease s leading to increase \(R_k\) due to \(\xi _k = \frac{2^{R_{I,k} - R_k} - 1}{{{\,\mathrm{Tr}\,}}(\mathbf G _{kk}{} \mathbf W _k)} \).
Such that, if the relaxed constraints do not hold with equalities at the optimum, the objective function can be further increased.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, P.A., Le Thi, H.A. (2020). A DCA-Based Approach for Outage Constrained Robust Secure Power-Splitting SWIPT MISO System. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-21803-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21802-7
Online ISBN: 978-3-030-21803-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)