Abstract
In this paper we develop and study machine learning based models based on latent semantic indexing capable of automatically assigning diagnoses and diagnostic categories to patients based on structured clinical data in their Electronic Health record (EHR). These models can be either used for automatic coding of patient’s diagnoses from structured EHR data at the time of discharge, or for supporting dynamic diagnosis and summarization of the patient condition. We study the performance of our diagnostic models on MIMIC-III EHR data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beaulieu-Jones, B.K., Moore, J.H.: Missing data imputation in the electronic health record using deeply learned autoencoders. In: Pacific Symposium on Biocomputing 2017, pp. 207–218. World Scientific (2017)
Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Rev. 41(2), 335–362 (1999)
Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based attention model for healthcare representation learning. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 787–795. ACM (2017)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. Technol. 41(6), 391–407 (1990)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 9, 1263–1284 (2008)
Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)
Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)
Pakhomov, S.V., Buntrock, J.D., Chute, C.G.: Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques. J. Am. Med. Inform. Assoc. 13(5), 516–525 (2006)
Wang, Y., et al.: Rubik: knowledge guided tensor factorization and completion for health data analytics. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1265–1274. ACM (2015)
Xie, P., Xing, E.: A neural architecture for automated ICD coding. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1066–1076 (2018)
Acknowledgement
This work was supported by NIH grant R01GM088224. The content of the paper is solely the responsibility of the authors and does not necessarily represent the official views of NIH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Malakouti, S., Hauskrecht, M. (2019). Predicting Patient’s Diagnoses and Diagnostic Categories from Clinical-Events in EHR Data. In: Riaño, D., Wilk, S., ten Teije, A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science(), vol 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-21642-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21641-2
Online ISBN: 978-3-030-21642-9
eBook Packages: Computer ScienceComputer Science (R0)