Nothing Special   »   [go: up one dir, main page]

Skip to main content

Function-Dependent Commitments from Homomorphic Authenticators

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11547))

Included in the following conference series:

Abstract

In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. In this context, the recently introduced function-dependent commitments (FDCs) are the only approach providing both fast correctness verification, information-theoretic input-output privacy, and strong unforgeability. Homomorphic authenticators—the established approach to this problem—do not provide information-theoretic privacy and always reveal the computation’s result upon verification, thus violating output privacy. Since many homomorphic authenticator schemes already exist, we investigate the relation between them and FDCs to clarify how existing schemes can be supplemented with information-theoretic output privacy. Specifically, we present a generic transformation turning any structure-preserving homomorphic authenticator scheme into an FDC scheme. This facilitates the design of multi-party computation schemes with full information-theoretic privacy. We also introduce a new structure-preserving, linearly homomorphic authenticator scheme suitable for our transformation. It is the first both context hiding and structure-preserving homomorphic authenticator scheme. Our scheme is also the first structure-preserving homomorphic authenticator scheme to achieve efficient verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_3

    Chapter  Google Scholar 

  2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  3. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. IACR ePrint 2010, 133 (2010)

    Google Scholar 

  4. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_18

    Chapter  Google Scholar 

  5. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: ACM CCS, pp. 863–874. ACM (2013)

    Google Scholar 

  6. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

    Chapter  Google Scholar 

  7. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_13

    Chapter  Google Scholar 

  8. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_21

    Chapter  Google Scholar 

  9. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups: new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_11

    Chapter  Google Scholar 

  10. Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable voting systems. In: CSF, pp. 169–183. IEEE Computer Society (2014)

    Google Scholar 

  11. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_17

    Chapter  Google Scholar 

  12. Ghadafi, E.: How low can you go? short structure-preserving signatures for Diffie-Hellman vectors. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 185–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_10

    Chapter  Google Scholar 

  13. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  14. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_7

    Chapter  Google Scholar 

  15. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_14

    Chapter  Google Scholar 

  16. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_17

    Chapter  Google Scholar 

  17. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP. LIPIcs, vol. 55, pp. 30:1–30:14, Dagstuhl (2016)

    Google Scholar 

  18. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_22

    Chapter  Google Scholar 

  19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  20. Schabhüser, L., Butin, D., Buchmann, J.: CHQS: publicly verifiable homomorphic signatures beyond the linear case. In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 213–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7_13

    Chapter  Google Scholar 

  21. Schabhüser, L., Butin, D., Buchmann, J.: Function-dependent commitments from homomorphic authenticators. IACR ePrint 2019, 250 (2019)

    Google Scholar 

  22. Schabhüser, L., Butin, D., Demirel, D., Buchmann, J.: Function-dependent commitments for verifiable multi-party computation. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 289–307. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_16

    Chapter  Google Scholar 

  23. Schabhüser, L., Demirel, D., Buchmann, J.: An unconditionally hiding auditing procedure for computations over distributed data. In: CNS, pp. 552–560. IEEE (2016)

    Google Scholar 

  24. Zhang, L.F., Safavi-Naini, R.: Generalized homomorphic MACs with efficient verification. In: AsiaPKC@AsiaCCS, pp. 3–12. ACM (2014)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the DFG as part of project S6 within the CRC 1119 CROSSING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Schabhüser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schabhüser, L., Butin, D., Buchmann, J. (2019). Function-Dependent Commitments from Homomorphic Authenticators. In: Jang-Jaccard, J., Guo, F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in Computer Science(), vol 11547. Springer, Cham. https://doi.org/10.1007/978-3-030-21548-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21548-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21547-7

  • Online ISBN: 978-3-030-21548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics