Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mercury\(^\mathrm{\textregistered }\): A Software Based on Fuzzy Clustering for Computer-Assisted Composition

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

Abstract

We present Mercury, a new software for computer-assisted composition based on fuzzy clustering algorithms. This software is able to generate a big number of transitions between any two different melodies, harmonic progressions or rhythmical patterns. Mercury works with symbolic music notation. The software is, therefore, able to read music and to export the generated musical production into MusicXML format. This paper focusses on some theoretical aspects of the CFT algorithm implemented in the software in order to create those complete transitions, overviewing not only the structure of the program but the user’s interface and its music notation module. Finally, the wide variety of compositional possibilities of Mercury are shown by means of several computational examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ariza, C.: Two pioneering projects from the early history of computer-aided algorithmic composition. Comput. Music J. 35(3), 40–56 (2011)

    Article  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  3. Biles, J.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of International Computer Music Conference ICMC 1994, pp. 131–137. Michigan Publishing (1994)

    Google Scholar 

  4. Buteau, C.: Melodic clustering within topological spaces of Schumann’s Träumerei. In: Proceedings of International Computer Music Conference ICMC 2006, pp. 104–110. Tulane University, New Orleans (2006)

    Google Scholar 

  5. Dodge, C.: Profile: a musical fractal. Comput. Music J. 12(3), 10–14 (1988)

    Article  Google Scholar 

  6. Farbood, M., Schoner, B.: Analysis and synthesis of Palestrina-style counterpoint using Markov Chains. In: Proceedings of International Computer Music Conference ICMC 2001, pp. 1–4. Michigan Publishing (2001)

    Google Scholar 

  7. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  8. Johnson, R.: Messiaen. University of California Press, Paris (1989)

    Google Scholar 

  9. Krzyzaniak, M.: Interactive learning of timbral rhythms for percussion robots. Comput. Music J. 42(2), 35–51 (2018)

    Article  Google Scholar 

  10. Liern, V.: Fuzzy tuning systems: the mathematics of musicians. Fuzzy Sets Syst. 150(1), 35–52 (2005)

    Article  MathSciNet  Google Scholar 

  11. Martínez, B., Liern, V.: A fuzzy-clustering based approach for measuring similarity between melodies. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 279–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_21

    Chapter  Google Scholar 

  12. Martínez, B., Liern, V.: Comparación y transiciones espectrales mediante el algoritmo fuzzy c-means. In: Tecniacústica 2017: 48\(^\circ \) Congreso Español de Acústica; Encuentro Ibérico de Acústica; European Symposium on Underwater Acoustics Applications, European Symposium on Sustainable Building Acoustics: A Coruña, 3–6 Octubre 2017, pp. 1169–1175. Sociedad Española de Acústica (2017)

    Google Scholar 

  13. Miranda, E.: Cellular automata music: an interdisciplinary project. J. New Music. Res. 22(1), 3–21 (1993)

    Google Scholar 

  14. Messiaen, O.: The Technique of My Musical Language. Alphonse Leduc, Paris (1956)

    Google Scholar 

  15. Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Generation. Springer, New York (2009). https://doi.org/10.1007/978-3-211-75540-2

    Book  MATH  Google Scholar 

  16. Roads, C.: Composing grammars. In: Proceedings of International Computer Music Conference ICMC 1977, pp. 54–132. University of California, San Diego (1977)

    Google Scholar 

  17. Selfridge-Field, E.: Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge (1997)

    Google Scholar 

  18. Tompkins, D.C.: A cluster analysis for mode identification in early music genres. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 312–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_24

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Liern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez–Rodríguez, B., Liern, V. (2019). Mercury\(^\mathrm{\textregistered }\): A Software Based on Fuzzy Clustering for Computer-Assisted Composition. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics