Abstract
We present Mercury, a new software for computer-assisted composition based on fuzzy clustering algorithms. This software is able to generate a big number of transitions between any two different melodies, harmonic progressions or rhythmical patterns. Mercury works with symbolic music notation. The software is, therefore, able to read music and to export the generated musical production into MusicXML format. This paper focusses on some theoretical aspects of the CFT algorithm implemented in the software in order to create those complete transitions, overviewing not only the structure of the program but the user’s interface and its music notation module. Finally, the wide variety of compositional possibilities of Mercury are shown by means of several computational examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ariza, C.: Two pioneering projects from the early history of computer-aided algorithmic composition. Comput. Music J. 35(3), 40–56 (2011)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Biles, J.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of International Computer Music Conference ICMC 1994, pp. 131–137. Michigan Publishing (1994)
Buteau, C.: Melodic clustering within topological spaces of Schumann’s Träumerei. In: Proceedings of International Computer Music Conference ICMC 2006, pp. 104–110. Tulane University, New Orleans (2006)
Dodge, C.: Profile: a musical fractal. Comput. Music J. 12(3), 10–14 (1988)
Farbood, M., Schoner, B.: Analysis and synthesis of Palestrina-style counterpoint using Markov Chains. In: Proceedings of International Computer Music Conference ICMC 2001, pp. 1–4. Michigan Publishing (2001)
Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM, Philadelphia (2007)
Johnson, R.: Messiaen. University of California Press, Paris (1989)
Krzyzaniak, M.: Interactive learning of timbral rhythms for percussion robots. Comput. Music J. 42(2), 35–51 (2018)
Liern, V.: Fuzzy tuning systems: the mathematics of musicians. Fuzzy Sets Syst. 150(1), 35–52 (2005)
Martínez, B., Liern, V.: A fuzzy-clustering based approach for measuring similarity between melodies. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 279–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_21
Martínez, B., Liern, V.: Comparación y transiciones espectrales mediante el algoritmo fuzzy c-means. In: Tecniacústica 2017: 48\(^\circ \) Congreso Español de Acústica; Encuentro Ibérico de Acústica; European Symposium on Underwater Acoustics Applications, European Symposium on Sustainable Building Acoustics: A Coruña, 3–6 Octubre 2017, pp. 1169–1175. Sociedad Española de Acústica (2017)
Miranda, E.: Cellular automata music: an interdisciplinary project. J. New Music. Res. 22(1), 3–21 (1993)
Messiaen, O.: The Technique of My Musical Language. Alphonse Leduc, Paris (1956)
Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Generation. Springer, New York (2009). https://doi.org/10.1007/978-3-211-75540-2
Roads, C.: Composing grammars. In: Proceedings of International Computer Music Conference ICMC 1977, pp. 54–132. University of California, San Diego (1977)
Selfridge-Field, E.: Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge (1997)
Tompkins, D.C.: A cluster analysis for mode identification in early music genres. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 312–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_24
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez–Rodríguez, B., Liern, V. (2019). Mercury\(^\mathrm{\textregistered }\): A Software Based on Fuzzy Clustering for Computer-Assisted Composition. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-21392-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21391-6
Online ISBN: 978-3-030-21392-3
eBook Packages: Computer ScienceComputer Science (R0)