Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Application of Computer Algebra and Dynamical Systems

  • Conference paper
  • First Online:
Algebraic Informatics (CAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Included in the following conference series:

Abstract

An algorithm for the symbolic computation of outer inverses of matrices is presented. The algorithm is based on the exact solution of the first order system of differential equations which appears in corresponding dynamical system. The domain of the algorithm are matrices whose elements are integers, rational numbers as well as one-variable or multiple-variable rational or polynomial expressions.

P. S. Stanimirović Gratefully acknowledge support from the Research Project 174013 of the Serbian Ministry of Education, Science and Technological Development.

P. S. Stanimirović and Y. Wei are supported by the bilateral project between China and Serbia, “The theory of tensors, operator matrices and applications” (no. 4–5).

Y. Wei is supported by the National Natural Science Foundation of China under grant 11771099.

J. R. Sendra and J. Sendra are supported by the Spanish Ministerio de Economía y Competitividad, by the European Regional Development Fund (ERDF), under the MTM2017-88796-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized inverses: Theory and Applications, vol. 2. Springer, New York (2003). https://doi.org/10.1007/b97366

    Book  MATH  Google Scholar 

  2. Fragulis, G., Mertzios, B.G., Vardulakis, A.I.G.: Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. Int. J. Control 53, 431–443 (1991)

    Article  MathSciNet  Google Scholar 

  3. Greville, T.N.E.: Some applications of the pseudo-inverse of matrix. SIAM Rev. 3, 15–22 (1960)

    Article  Google Scholar 

  4. Jones, J., Karampetakis, N.P., Pugh, A.C.: The computation and application of the generalized inverse vai Maple. J. Symbolic Comput. 25, 99–124 (1998)

    Article  MathSciNet  Google Scholar 

  5. Karampetakis, N.P.: Computation of the generalized inverse of a polynomial matrix and applications. Linear Algebra Appl. 252, 35–60 (1997)

    Article  MathSciNet  Google Scholar 

  6. Karampetakis, N.P.: Generalized inverses of two-variable polynomial matrices and applications. Circ. Syst. Sign. Process. 16, 439–453 (1997)

    Article  MathSciNet  Google Scholar 

  7. Karampetakis, N.P., Vologiannidis, S.: DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Appl. Math. Comput. 143, 501–521 (2003)

    MathSciNet  MATH  Google Scholar 

  8. McNulty, S.K., Kennedy, W.J.: Error-free computation of a reflexive generalized inverse. Linear Algebra Appl. 67, 157–167 (1985)

    Article  MathSciNet  Google Scholar 

  9. Luo, F.L., Bao, Z.: Neural network approach to computing matrix inversion. Appl. Math. Comput. 47, 109–120 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Petković, M.D., Stanimirović, P.S., Tasić, M.B.: Effective partitioning method for computing weighted Moore-Penrose inverse. Comput. Math. Appl. 55, 1720–1734 (2008)

    Article  MathSciNet  Google Scholar 

  11. Petković, M.D., Stanimirović, P.S.: Symbolic computation of the Moore-Penrose inverse using partitioning method. Int. J. Comput. Math. 82, 355–367 (2005)

    Article  MathSciNet  Google Scholar 

  12. Rao, T.M., Subramanian, K., Krishnamurthy, E.V.: Residue arithmetic algorithms for exact computation of g-Inverses of matrices. SIAM J. Numer. Anal. 13, 155–171 (1976)

    Article  MathSciNet  Google Scholar 

  13. Sendra, J.R., Sendra, J.: Symbolic computation of Drazin inverses by specializations. J. Comput. Appl. Math. 301, 201–212 (2016)

    Article  MathSciNet  Google Scholar 

  14. Sendra, J.R., Sendra, J.: Computation of moore-penrose generalized inverses of matrices with meromorphic function entries. Appl. Math. Comput. 313, 355–366 (2017)

    Article  MathSciNet  Google Scholar 

  15. Stanimirović, I.P., Tasić, M.B.: Computation of generalized inverses by using the \(LDL^*\) decomposition. Appl. Math. Lett. 25, 526–531 (2012)

    Article  MathSciNet  Google Scholar 

  16. Stanimirović, P.S., Petković, M.: Gradient neural dynamics for solving matrix equations and their applications. Neurocomputing 306, 200–212 (2018)

    Article  Google Scholar 

  17. Stanimirović, P.S., Tasić, M.B.: Partitioning method for rational and polynomial matrices. Appl. Math. Comput. 155, 137–163 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Stanimirović, P.S., Pappas, D., Katsikis, V.N., Stanimirović, I.P.: Symbolic computation of \(A^{(2)}_{T, S}\)-inverses using QDR factorization. Linear Algebra Appl. 437, 1317–1331 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tasić, M.B., Stanimirović, P.S., Petković, M.D.: Symbolic computation of weighted Moore-Penrose inverse using partitioning method. Appl. Math. Comput. 189, 615–640 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Wang, G.R., Wei, Y.M., Qiao, S.Z.: Generalized Inverses: Theory and Computations. Second edition. Developments in Mathematics, vol. 53. Springer, Singapore; Science Press Beijing, Beijing (2018)

    Chapter  Google Scholar 

  21. Wang, J.: Recurrent neural networks for solving linear matrix equations. Comput. Math. Appl. 26, 23–34 (1993)

    Article  MathSciNet  Google Scholar 

  22. Wang, J.: A recurrent neural network for real-time matrix inversion. Appl. Math. Comput. 55, 89–100 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Wang, J.: Recurrent neural networks for computing pseudoinverses of rank-deficient matrices. SIAM J. Sci. Comput. 18, 1479–1493 (1997)

    Article  MathSciNet  Google Scholar 

  24. Wei, Y.: Recurrent neural networks for computing weighted Moore-Penrose inverse. Appl. Math. Comput. 116, 279–287 (2000)

    Article  MathSciNet  Google Scholar 

  25. Wei, Y.: Integral representation of the generalized inverse \(A^{(2)}_{T, S}\) and its applications. In: Recent Research on Pure and Applied Algebra, pp. 59–65. Nova Science Publisher, New York (2003)

    Google Scholar 

  26. Wei, Y., Stanimirović, P.S., Petković, M.D.: Numerical and Symbolic Computations of Generalized Inverses. World Scientific Publishing Co., Pte. Ltd., Hackensack (2018)

    Book  Google Scholar 

  27. Wolfram Research Inc., Mathematica, Version 10.0, Champaign, IL (2015)

    Google Scholar 

  28. Yu, Y., Wang, G.: DFT calculation for the 2-inverse of a polynomial matrix with prescribed image and kernel. Appl. Math. Comput. 215, 2741–2749 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Živković, I., Stanimirović, P.S., Wei, Y.: Recurrent neural network for computing outer inverses. Neural Comput. 28(5), 970–998 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag S. Stanimirović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stanimirović, P.S., Wei, Y., Kolundžija, D., Sendra, J.R., Sendra, J. (2019). An Application of Computer Algebra and Dynamical Systems. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics