Nothing Special   »   [go: up one dir, main page]

Skip to main content

Solving the Multi-Period Water Distribution Network Design Problem with a Hybrid Simulated Anealling

  • Conference paper
  • First Online:
Computer Science – CACIC 2018 (CACIC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 995))

Included in the following conference series:

Abstract

This work presents an optimization technique based on Simulated Annealing (SA) to solve the Water Distribution Network Design problem, considering multi-period restrictions with time varying demand patterns. The design optimization of this kind of networks is an important issue in modern cities, since a safe, adequate, and accessible supply of potable water is one of the basic necessities of any human being. Given the complexity of this problem, the SA is improved with a local search procedure, yielding a hybrid SA, in order to obtain good quality networks designs. Additionally, four variants of this algorithm based on different cooling schemes are introduced and analyzed. A broad experimentation using different benchmark networks is carried out to test our proposals. Moreover, a comparison with an approach from the literature reveals the goodness to solve this network design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The base loads can be found in the EPANET input files of the instances.

References

  1. Yates, D.F., Templeman, A.B., Boffey, T.B.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optim. 7(2), 143–155 (1984)

    Article  Google Scholar 

  2. Alperovits, A., Shamir, U.: Design of optimal water distribution systems. Water Resour. Res. 13(6), 885–900 (1977)

    Article  Google Scholar 

  3. Kessler, A., Shamir, U.: Analysis of the linear programming gradient method for optimal design of water supply networks. Water Resour. Res. 25(7), 1469–1480 (1989)

    Article  Google Scholar 

  4. Fujiwara, O., Khang, D.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 26(4), 539–549 (1990)

    Article  Google Scholar 

  5. Duan, N., Mays, L.W., Lansey, K.E.: Optimal reliability-based design of pumping and distribution systems. J. Hydraul. Eng. 116(2), 249–268 (1990)

    Article  Google Scholar 

  6. Loganathan, G., Greene, J., Ahn, T.: Design heuristic for globally minimum cost water-distribution systems. J. Water Res. Plan. Manag. 121(2), 182–192 (1995)

    Article  Google Scholar 

  7. da Conceicao Cunha, M., Sousa, J.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. 7(1), 32–39 (2001)

    Article  Google Scholar 

  8. da Conceicao Cunha, M., Ribeiro, L.: Tabu search algorithms for water network optimization. Eur. J. Oper. Res. 157(3), 746–758 (2004)

    Article  MATH  Google Scholar 

  9. Maier, H.R., et al.: Ant colony optimization for design of water distribution systems. J. Water Resour. Plan. Manag. 129(3), 200–209 (2003)

    Article  Google Scholar 

  10. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Transact. Evol. Comput. 9(2), 175–191 (2005)

    Article  Google Scholar 

  11. Dandy, G.C., Simpson, A.R., Murphy, L.J.: An improved genetic algorithm for pipe network optimization. Water Resour. Res. 32(2), 449–458 (1996)

    Article  Google Scholar 

  12. Gupta, I., Gupta, A., Khanna, P.: Genetic algorithm for optimization of water distribution systems. Environ. Model. Softw. 14(5), 437–446 (1999)

    Article  Google Scholar 

  13. Bi, W., Dandy, G.C., Maier, H.R.: Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge. Environ. Model. Softw. 69, 370–381 (2015)

    Article  Google Scholar 

  14. Lin, M.-D., Liu, Y.-H., Liu, G.-F., Chu, C.-W.: Scatter search heuristic for least-cost design of water distribution networks. Eng. Optim. 39(7), 857–876 (2007)

    Article  Google Scholar 

  15. Vasan, A., Simonovic, S.P.: Optimization of water distribution network design using differential evolution. J. Water Resour. Plan. Manag. 136(2), 279–287 (2010)

    Article  Google Scholar 

  16. Farmani, R., Walters, G.A., Savic, D.A.: Trade-off between total cost and reliability for anytown water distribution network. J. Water Resour. Plan. Manag. 131(3), 161–171 (2005)

    Article  Google Scholar 

  17. Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13(2), 219–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Uma, R.: Optimal design of water distribution network using differential evolution. Int. J. Sci. Res. (IJSR) 5(11), 1515–1520 (2016)

    Google Scholar 

  19. Mansouri, R., Mohamadizadeh, M.: Optimal design of water distribution system using central force optimization and differential evolution. Int. J. Optim. Civil Eng. 7(3), 469–491 (2017). http://ijoce.iust.ac.ir/article-1-310-en.html

    Google Scholar 

  20. De Corte, A., Sörensen, K.: An iterated local search algorithm for water distribution network design optimization. Network 67(3), 187–198 (2016)

    Article  Google Scholar 

  21. Bermudez, C.A., Minetti, G.F., Salto, C.: SA to optimize the multi-period water distribution network design. In: XXIX Congreso Argentino de Ciencias de la Computación, CACIC 2018, pp. 12–21 (2018)

    Google Scholar 

  22. Rossman, L.A.: The EPANET Programmer’s Toolkit for Analysis of Water Distribution Systems (1999)

    Google Scholar 

  23. Kirkpatrick, S., Jr, C.G., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  25. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–329 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984). https://doi.org/10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  27. De Corte, A., Sörensen, K.: Hydrogen. http://antor.uantwerpen.be/hydrogen. Accessed on 27 June 2018

Download references

Acknowledgments

The authors acknowledge the support of Universidad Nacional de La Pampa and the Incentive Program from MINCyT. The second author is also funded by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Minetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bermudez, C., Salto, C., Minetti, G. (2019). Solving the Multi-Period Water Distribution Network Design Problem with a Hybrid Simulated Anealling. In: Pesado, P., Aciti, C. (eds) Computer Science – CACIC 2018. CACIC 2018. Communications in Computer and Information Science, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-030-20787-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20787-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20786-1

  • Online ISBN: 978-3-030-20787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics