Nothing Special   »   [go: up one dir, main page]

Skip to main content

telingo = ASP + Time

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2019)

Abstract

We describe telingo, an extension of the ASP system clingo with temporal operators over finite linear time and provide insights into its implementation. telingo takes temporal logic programs as input whose rules contain only future and present operators in their heads and past and present operators in their bodies. Moreover, telingo extends the grammar of clingo’s input language with a variety of temporal operators that can even be used to represent nested temporal formulas. By using clingo’s interface for manipulating the abstract syntax tree of non-ground programs, temporal logic programs are transformed into regular ones before grounding. The resulting regular logic program is then solved incrementally by using clingo’s multi-shot interface. Notably, this involves the consecutive unfolding of future temporal operators that is accomplished via external atoms. Finally, we provide an empirical evaluation contrasting standard incremental ASP programs with their temporal counterparts in telingo’s input language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the default value assigned to input atoms is false in multi-shot solving [10]; this differs from the original definition [16] where a choice rule is used.

  2. 2.

    Recall that in the logic of here-and-there and thus in \(\mathrm {\mathrm {TEL}}_{\!f}\), too.

  3. 3.

    The extension to arbitrary occurrences is no hurdle and foreseen in future versions of telingo.

  4. 4.

    As above, the extension to disjunctions is no principal hurdle and foreseen in future versions of telingo; currently they must be expressed by using .

  5. 5.

    https://potassco.org/clingo.

  6. 6.

    This is also why this extension to the past-future format is tolerated in telingo’s input language.

  7. 7.

    is valid in \(\mathrm {TEL}\).

  8. 8.

    Unlike in the example above, we do not obtain strongly equivalent rules because we do not introduce weak next operators. This is safe in this context because the literal \({\bullet }^i \ell \) does not apply for horizons smaller \(i\).

  9. 9.

    This feature is introduced with clingo 5.4.

  10. 10.

    https://github.com/potassco/asp-planning-benchmarks.

  11. 11.

    https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0.

  12. 12.

    Detailed results are obtainable at https://github.com/potassco/clingo-vs-telingo-planning/tree/v1.0.0/benchmark-results.

References

  1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-Classical Log. 23(1–2), 2–24 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable models for linear dynamic logic. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 12–21. AAAI Press (2018)

    Google Scholar 

  3. Cabalar, P., Diéguez, M.: STELP: a tool for temporal answer set programming. In: [7], pp. 370–375 (2011)

    Chapter  Google Scholar 

  4. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on finite traces. Theory Pract. Log. Program. 18(3–4), 406–420 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75867-9_31

    Chapter  Google Scholar 

  6. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 854–860. IJCAI/AAAI Press (2013)

    Google Scholar 

  7. Delgrande, J., Faber, W. (eds.): LPNMR 2011. LNCS, vol. 6645. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9

    Book  MATH  Google Scholar 

  8. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: Towards effective ASP planning. Theory Pract. Log. Program. (2018, to appear)

    Google Scholar 

  9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Technical Communications of the International Conference on Logic Programming, vol. 52, pp. 2:1–2:15. OASIcs (2016)

    Google Scholar 

  10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: [7], pp. 345–351 (2011)

    Google Scholar 

  12. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal answer sets. Theory Pract. Log. Program. 13(2), 201–225 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving with clingo. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp. 167–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7_6

    Chapter  Google Scholar 

  14. Kamp, J.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)

    Google Scholar 

  15. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic Programming, pp. 23–37. MIT Press (1999)

    Google Scholar 

  16. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proceedings of the European Conference on Artificial Intelligence, pp. 412–416. IOS Press (2006)

    Google Scholar 

  17. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Symposium on Foundations of Computer Science, pp. 46–57. IEEE Press (1977)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by MINECO, Spain, grant TIC2017-84453-P, Xunta de Galicia, Spain (GPC ED431B 2016/035 and 2016-2019 ED431G/01, CITIC), and DFG grant SCHA 550/9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Schaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T. (2019). telingo = ASP + Time. In: Balduccini, M., Lierler, Y., Woltran, S. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. Lecture Notes in Computer Science(), vol 11481. Springer, Cham. https://doi.org/10.1007/978-3-030-20528-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20528-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20527-0

  • Online ISBN: 978-3-030-20528-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics