Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Preprocessing for Semi-supervised Image Classification in Modern Industry

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

We are focusing on image classification in industrial processing taking into account the most problematic issue of the processing: the lack of labeled data. Here, we are considering three datasets: the first one is an unsorted collection of all types of manufactured products and includes 100 images per class. The second one consists of products sorted into particular classes by a specialized employee and includes only ten images per class. The last one includes a massive volume of labeled images, but it is used only for the proposal validation. As the configuration is challenging for neural networks, we propose to use Image Represented by a Fuzzy Function in order to enrich original image information. We solve the task using various autoencoder architectures and prove that such the proposal increases the autoencoders success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alwosheel, A., van Cranenburgh, S., Chorus, C.G.: Is your dataset big enough? sample size requirements when using artificial neural networks for discrete choice analysis. J. Choice Model. 28, 167–182 (2018)

    Article  Google Scholar 

  2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  3. Geng, J., Fan, J., Wang, H., Ma, X., Li, B., Chen, F.: High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 12(11), 2351–2355 (2015)

    Article  Google Scholar 

  4. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  5. Hurtik, P., Burda, M., Perfilieva, I.: An image recognition approach to classification of jewelry stone defects. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 727–732. IEEE (2013)

    Google Scholar 

  6. Hurtik, P., Molek, V., Hula, J.: Data preprocessing technique for neural networks based on image represented by a fuzzy function. IEEE Trans. Fuzzy Syst. 1–10 (2019). submitted

    Google Scholar 

  7. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(10), 1489–1506 (2000)

    Article  Google Scholar 

  8. Madrid, N., Hurtik, P.: Lane departure warning for mobile devices based on a fuzzy representation of images. Fuzzy Sets Syst. 291, 144–159 (2016)

    Article  MathSciNet  Google Scholar 

  9. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  10. Novák, V., Hurtík, P., Habiballa, H.: Recognition of distorted characters printed on metal using fuzzy logic methods. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 733–738. IEEE (2013)

    Google Scholar 

  11. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic, vol. 517. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  12. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395 (2017)

  13. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 490–497 (2014)

    Google Scholar 

  15. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported from ERDF/ESF “Centre for the development of Artificial Intelligence Methods for the Automotive Industry of the region” (No. CZ.02.1.01/0.0/0.0/17_049/0008414).

For more supplementary materials and overview of our lab work see http://graphicwg.irafm.osu.cz/storage/pr/links.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hurtik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hurtik, P., Molek, V. (2019). Fuzzy Preprocessing for Semi-supervised Image Classification in Modern Industry. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics