Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shrinkage Estimation on the Manifold of Symmetric Positive-Definite Matrices with Applications to Neuroimaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

The James-Stein shrinkage estimator was proposed in the field of Statistics as an estimator of the mean for samples drawn from a Gaussian distribution and shown to dominate the maximum likelihood estimator (MLE) in terms of the risk. This seminal work lead to a flurry of activity in the field of shrinkage estimation. However, there has been very little work on shrinkage estimation for data samples that reside on manifolds. In this paper, we present a novel shrinkage estimator of the Fréchet Mean (FM) of manifold-valued data for the manifold, \(P_n\), of symmetric positive definite matrices of size ‘n’. We choose to endow \(P_n\) with the well known Log-Euclidean metric for its simplicity and ease of computation. With this choice of the metric, we show that the shrinkage estimator can be derived in an analytic form. Further, we prove that the shrinkage estimate of FM dominates the MLE of the FM in terms of the risk. We present several synthetic data examples with noise along with performance comparisons to estimated FM using other non-shrinkage estimators. As an application of shrinkage FM-estimation to real data, we compute the average motor sensory area (M1) tract from diffusion MR brain scans of controls and patients with Parkinson Disease (PD). We first show the dominance of the shrinkage FM estimator over the MLE of FM in this setting and then perform group testing to show differences between PD and controls based on the M1 tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)

    Article  MathSciNet  Google Scholar 

  2. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  3. Brandwein, A.C., Strawderman, W.E.: Stein estimation for spherically symmetric distributions: recent developments. Stat. Sci. 27(1), 11–23 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chakraborty, R., Vemuri, B.C.: Recursive fréchet mean computation on the grassmannian and its applications to computer vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4229–4237 (2015)

    Google Scholar 

  5. Daniels, M.J., Kass, R.E.: Shrinkage estimators for covariance matrices. Biometrics 57(4), 1173–1184 (2001)

    Article  MathSciNet  Google Scholar 

  6. Efron, B., Morris, C.: Stein’s estimation rule and its competitorsan empirical Bayes approach. J. Am. Stat. Assoc. 68(341), 117–130 (1973)

    MATH  Google Scholar 

  7. Feldman, S., Gupta, M.R., Frigyik, B.A.: Revisiting stein’s paradox: multi-task averaging. J. Mach. Learn. Res. 15(1), 3441–3482 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Fleishman, G.M., Fletcher, P.T., Gutman, B.A., Prasad, G., Wu, Y., Thompson, P.M.: Geodesic refinement using james-stein estimators. Math. Found. Comput. Anat. 60, 60–70 (2015)

    Google Scholar 

  9. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. American Mathematical Society, Providence (2001)

    Book  Google Scholar 

  10. Ho, J., Cheng, G., Salehian, H., Vemuri, B.: Recursive Karcher expectation estimators and geometric law of large numbers. In: Artificial Intelligence and Statistics, pp. 325–332 (2013)

    Google Scholar 

  11. James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379 (1961)

    Google Scholar 

  12. Jing, B.Y., Li, Z., Pan, G., Zhou, W.: On sure-type double shrinkage estimation. J. Am. Stat. Assoc. 111(516), 1696–1704 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kong, X., Liu, Z., Zhao, P., Zhou, W.: Sure estimates under dependence and heteroscedasticity. J. Multivar. Anal. 161, 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004)

    Article  MathSciNet  Google Scholar 

  15. Manton, J.H., Krishnamurthy, V., Poor, H.V.: James-stein state filtering algorithms. IEEE Trans. Sig. Process. 46(9), 2431–2447 (1998)

    Article  Google Scholar 

  16. Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.: Kernel mean shrinkage estimators. J. Mach. Learn. Res. 17(1), 1656–1696 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Salehian, H., Chakraborty, R., Ofori, E., Vaillancourt, D., Vemuri, B.C.: An efficient recursive estimator of the fréchet mean on a hypersphere with applications to medical image analysis. Math. Found. Comput. Anat. 3, 143–154 (2015)

    Google Scholar 

  18. Schwartzman, A.: Random ellipsoids and false discovery rates: statistics for diffusion tensor imaging data. Ph.D. thesis, Stanford University (2006)

    Google Scholar 

  19. Schwartzman, A.: Lognormal distributions and geometric averages of symmetric positive definite matrices. Int. Stat. Rev. 84(3), 456–486 (2016)

    Article  MathSciNet  Google Scholar 

  20. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. 1, pp. 197–206. University of California Press, Berkeley (1956)

    Google Scholar 

  21. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MathSciNet  Google Scholar 

  22. Sturm, K.T.: Probability measures on metric spaces of nonpositive. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Lecture Notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs, 16 April–13 July 2002, vol. 338, p. 357. Emile Borel Centre of the Henri Poincaré Institute, Paris (2003)

    Google Scholar 

  23. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications II. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  24. Xie, X., Kou, S.C., Brown, L.: Optimal shrinkage estimation of mean parameters in family of distributions with quadratic variance. Ann. Stat. 44(2), 564 (2016)

    Article  MathSciNet  Google Scholar 

  25. Xie, X., Kou, S., Brown, L.D.: Sure estimates for a heteroscedastic hierarchical model. J. Am. Stat. Assoc. 107(500), 1465–1479 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was in part funded by the NSF grants IIS-1525431 and IIS-1724174 to BCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba C. Vemuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, CH., Vemuri, B.C. (2019). Shrinkage Estimation on the Manifold of Symmetric Positive-Definite Matrices with Applications to Neuroimaging. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics