Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Cost-Effective Embedded Platform for Scalable Multichannel Biopotential Acquisition

  • Conference paper
  • First Online:
13th EAI International Conference on Body Area Networks (BODYNETS 2018)

Abstract

The design of a compact and cost-effective system for acquisition and processing of high-count biopotential sensor arrays is an open challenge, which could, if addressed, significantly push forward the State-of-the-Art (SoA) wearable applications. Nowadays, the form factor of commercial devices for large-array acquisition does not match size constraints of a wearable setup and most systems rely on high-cost chips, typically with a cost per channel higher than 10 USD. In this work, we present a scalable multichannel platform for biopotential acquisition, which breaks the barrier of 1 USD per channel, and can acquire 32 channels with an input-referred noise of 0.75 μVRMS in the [0.5–100] Hz band and 1.15 μVRMS in the [20–250] Hz band and with 24-bit resolution, which is still suitable for most biomedical and rehabilitation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Texas Instruments (2016). http://www.ti.com/product/ADS131E08. Date Last Accessed 28 May 2018

  2. Robinson, A.K., Venkatesh, P., Boring, M. J., Tarr, M. J., Grover, P., Behrmann, M.: Very high density EEG elucidates spatiotemporal aspects of early visual processing. Sci. Rep. 7(1), 16248 (2017)

    Article  Google Scholar 

  3. Chu, C.J.: High density EEG—what do we have to lose? Clin. Neurophysiol. 126(3), 433 (2015)

    Article  Google Scholar 

  4. Murphy, M., Bruno, M.-A., Riedner, B.A., Boveroux, P., Noirhomme, Q., Landsness, E.C., Brichant, J.-F., Phillips, C., Massimini, M., Laureys, S., et al.: Propofol anesthesia and sleep: a high-density EEG study. Sleep 34(3), 283–291 (2011)

    Article  Google Scholar 

  5. Merletti, R., Holobar, A., Farina, D.: Analysis of motor units with high-density surface electromyography. J. Electromyogr. Kinesiol. 18(6), 879–890 (2008)

    Article  Google Scholar 

  6. Moin, A., et al.: An EMG gesture recognition system with flexible high-density sensors and brain-inspired high-dimensional classifier. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE, Piscataway (2018)

    Google Scholar 

  7. Carboni, C., et al.: Earnest: a 64 channel device for neural recording and sensory touch restoration in neural prosthetics. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (2017). https://doi.org/10.1109/BIOCAS.2017.8325549

  8. Benatti, S., et al.: A sub-10 mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical Soc. In: 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 139–144. IEEE, Piscataway (2017)

    Google Scholar 

  9. Farnsworth, B.D., et al.: Wireless implantable EMG sensing microsystem, in: 2008 IEEE Sensors, pp. 1245–1248 (2008)

    Google Scholar 

  10. INTAN Technologies Inc (2014). http://www.intantech.com/. Date Last Accessed 28 May 2018

  11. Lopez, C.M., et al.: A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11(3), 510–522 (2017)

    Google Scholar 

  12. Song, H., et al.: Fully integrated biopotential acquisition analog front-end IC. Sensors 15(10), 25139–25156 (2015)

    Article  Google Scholar 

  13. Erickson, J.C., et al.: Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system. Physiol. Meas. 39(3), 035008 (2018)

    Article  MathSciNet  Google Scholar 

  14. Nuwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guérit, J.-M., Hinrichs, H., Ikeda, A., Luccas, F.J.C., Rappelsburger, P.: IFCN standards for digital recording of clinical EEG. Clin. Neurophysiol. 106(3), 259–261 (1998)

    Article  Google Scholar 

  15. Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)

    Article  Google Scholar 

  16. ATMEL ATWIN1500 (2015). https://www.microchip.com/wwwproducts/en/ATWINC1500. Date Last Accessed 20 Nov 2017

  17. Bluegiga WT12 (2012). https://www.silabs.com/products/wireless/bluetooth/bluetooth-classic-modules/wt12-bluetooth-class-2-module. Date Last Accessed 20 Nov 2017

  18. Guermandi, M., et al.: A driving right leg circuit (DgRL) for improved common mode rejection in bio-potential acquisition systems. IEEE Trans. Biomed. Circuits Syst. 10(2), 507–517 (2016)

    Article  Google Scholar 

  19. COVIDIEN Electrodes (2014). http://products.covidien.com. Date Last Accessed 28 May 2018

  20. Yazicioglu, R.F., et al.: A 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)

    Article  Google Scholar 

  21. Benatti, S., et al.: A prosthetic hand body area controller based on efficient pattern recognition control strategies. Sensors 17(4), 869 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European H2020 FET project OPRECOMP (g.a. 732631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Benatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benatti, S., Guermandi, M., Benini, L. (2020). A Cost-Effective Embedded Platform for Scalable Multichannel Biopotential Acquisition. In: Sugimoto, C., Farhadi, H., Hämäläinen, M. (eds) 13th EAI International Conference on Body Area Networks . BODYNETS 2018. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-29897-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29897-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29896-8

  • Online ISBN: 978-3-030-29897-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics