Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Adaptive Copy-Move Forgery Detection Using Wavelet Coefficients Multiscale Decay

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11678))

Included in the following conference series:

  • 1676 Accesses

Abstract

In this paper, an adaptive method for copy-move forgery detection and localization in digital images is proposed. The method employs wavelet transform with non constant Q factor and characterizes image pixels through the multiscale behavior of corresponding wavelet coefficients. The detection of forged regions is then performed by considering similar those pixels having the same multiscale behavior. The method is pointwise and the length of pixel features vector is image dependent, allowing for a more precise and fast detection of forged regions. The qualitative and quantitative evaluation of the experimental results reveals that the proposed method outperforms some existing transform-based methods in terms of performance and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farid, H.: A survey of image forgery detection. IEEE Sig. Proc. Mag. 26, 16–25 (2009)

    Article  Google Scholar 

  2. Piva, A.: An overview on image forensics. ISRN Sig. Process. 2013, 1–22 (2013)

    Article  Google Scholar 

  3. Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)

    Book  Google Scholar 

  4. Kumar, C., Kumar Singh, A., Kumar, P.: A recent survey on image watermarking techniques and its application in e-governance. Multimed. Tools Appl. 77, 3597–3622 (2018)

    Article  Google Scholar 

  5. Arnold, M., Schmucker, M., Wolthusen, S.D.: Techniques and Applications of Digital Watermarking and Content Protection. Artech House Inc., Norwood (2003)

    Google Scholar 

  6. Lin, X., Li, J., Wanga, S., Liew, A., Cheng, F., Huang, X.: Recent advances in passive digital image security forensics: a brief review. Engineering 4, 29–39 (2018)

    Article  Google Scholar 

  7. Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Invest. 10(3), 226–245 (2013)

    Article  Google Scholar 

  8. Panda, S., Mishra, M.: Passive techniques of digital image forgery detection: developments and challenges. In: Kalam, A., Das, S., Sharma, K. (eds.) Advances in Electronics, Communication and Computing. LNEE, vol. 443, pp. 281–290. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4765-7_29

    Chapter  Google Scholar 

  9. Fridrich, A.J., Soukal, B.D., Lukas, A.J.: Detection of copy-move forgery in digital images. Int. J. 3(2), 652–663 (2003)

    Google Scholar 

  10. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Technical report. Department of Computer Science, Dartmouth College, Hanover, No. TR2004-515 (2004)

    Google Scholar 

  11. Myna, A., Venkateshmurthy, M., Patil, C.: Detection of region duplication forgery in digital images using wavelets and log-polar mapping. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), pp. 371–377 (2007)

    Google Scholar 

  12. Zandi, M., Mahmoudi-Aznaveh, A., Mansouri, A.: Adaptive matching for copy-move forgery detection. In: Proceedings of IEEE International Workshop on Information Forensics and Security, pp. 119–124 (2014)

    Google Scholar 

  13. Mahmood, T., Mehmood, Z., Shah, M., Sabad, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53, 202–214 (2018)

    Article  Google Scholar 

  14. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Bruni, V., Piccoli, B., Vitulano, D.: A fast computation method for time-scale signal denoising. Sig. Image Video Process. 3(1), 63–83 (2009)

    Article  Google Scholar 

  16. Bruni, V., Vitulano, D.: Time scale similarities for robust image denoising. J. Math. Imaging Vis. 44(1), 52–64 (2012)

    Article  Google Scholar 

  17. Peli, E.: Contrast in complex images. J. Opt. Soc. Am. 7(10), 2032–2040 (1990)

    Article  Google Scholar 

  18. Basile, M.C., Bruni, V., Vitulano, D.: A CSF-based preprocessing method for image deblurring. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 602–614. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_51

    Chapter  Google Scholar 

  19. Bruni, V., Salvi, A., Vitulano, D.: A wavelet based image fusion method using local multiscale image regularity. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 534–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_45

    Chapter  Google Scholar 

  20. Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFoD—new database for copy-move forgery detection. In: 55th International Symposium, ELMAR 2013, pp. 49–54 (2013)

    Google Scholar 

  21. Al-Qershi, O.A., Khoo, B.E.: Evaluation of copy-move forgery detection: datasets and evaluation metrics. Multimed. Tools Appl. 77, 31807–31833 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the GNCS (Gruppo Nazionale di CalcoloScientifico) of the INdAM (IstitutoNazionale di Alta Matematica) and partially funded by Regione Lazio, POR FESR Aerospace and Security Programme, Project COURIER - COUntering RadIcalism InvEstigation platform - CUP F83G17000860007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Ramella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruni, V., Ramella, G., Vitulano, D. (2019). An Adaptive Copy-Move Forgery Detection Using Wavelet Coefficients Multiscale Decay. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics