Abstract
In this paper, an adaptive method for copy-move forgery detection and localization in digital images is proposed. The method employs wavelet transform with non constant Q factor and characterizes image pixels through the multiscale behavior of corresponding wavelet coefficients. The detection of forged regions is then performed by considering similar those pixels having the same multiscale behavior. The method is pointwise and the length of pixel features vector is image dependent, allowing for a more precise and fast detection of forged regions. The qualitative and quantitative evaluation of the experimental results reveals that the proposed method outperforms some existing transform-based methods in terms of performance and execution time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Farid, H.: A survey of image forgery detection. IEEE Sig. Proc. Mag. 26, 16–25 (2009)
Piva, A.: An overview on image forensics. ISRN Sig. Process. 2013, 1–22 (2013)
Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)
Kumar, C., Kumar Singh, A., Kumar, P.: A recent survey on image watermarking techniques and its application in e-governance. Multimed. Tools Appl. 77, 3597–3622 (2018)
Arnold, M., Schmucker, M., Wolthusen, S.D.: Techniques and Applications of Digital Watermarking and Content Protection. Artech House Inc., Norwood (2003)
Lin, X., Li, J., Wanga, S., Liew, A., Cheng, F., Huang, X.: Recent advances in passive digital image security forensics: a brief review. Engineering 4, 29–39 (2018)
Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Invest. 10(3), 226–245 (2013)
Panda, S., Mishra, M.: Passive techniques of digital image forgery detection: developments and challenges. In: Kalam, A., Das, S., Sharma, K. (eds.) Advances in Electronics, Communication and Computing. LNEE, vol. 443, pp. 281–290. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4765-7_29
Fridrich, A.J., Soukal, B.D., Lukas, A.J.: Detection of copy-move forgery in digital images. Int. J. 3(2), 652–663 (2003)
Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Technical report. Department of Computer Science, Dartmouth College, Hanover, No. TR2004-515 (2004)
Myna, A., Venkateshmurthy, M., Patil, C.: Detection of region duplication forgery in digital images using wavelets and log-polar mapping. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), pp. 371–377 (2007)
Zandi, M., Mahmoudi-Aznaveh, A., Mansouri, A.: Adaptive matching for copy-move forgery detection. In: Proceedings of IEEE International Workshop on Information Forensics and Security, pp. 119–124 (2014)
Mahmood, T., Mehmood, Z., Shah, M., Sabad, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53, 202–214 (2018)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1998)
Bruni, V., Piccoli, B., Vitulano, D.: A fast computation method for time-scale signal denoising. Sig. Image Video Process. 3(1), 63–83 (2009)
Bruni, V., Vitulano, D.: Time scale similarities for robust image denoising. J. Math. Imaging Vis. 44(1), 52–64 (2012)
Peli, E.: Contrast in complex images. J. Opt. Soc. Am. 7(10), 2032–2040 (1990)
Basile, M.C., Bruni, V., Vitulano, D.: A CSF-based preprocessing method for image deblurring. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 602–614. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_51
Bruni, V., Salvi, A., Vitulano, D.: A wavelet based image fusion method using local multiscale image regularity. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 534–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_45
Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: CoMoFoD—new database for copy-move forgery detection. In: 55th International Symposium, ELMAR 2013, pp. 49–54 (2013)
Al-Qershi, O.A., Khoo, B.E.: Evaluation of copy-move forgery detection: datasets and evaluation metrics. Multimed. Tools Appl. 77, 31807–31833 (2018)
Acknowledgments
This research has been supported by the GNCS (Gruppo Nazionale di CalcoloScientifico) of the INdAM (IstitutoNazionale di Alta Matematica) and partially funded by Regione Lazio, POR FESR Aerospace and Security Programme, Project COURIER - COUntering RadIcalism InvEstigation platform - CUP F83G17000860007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bruni, V., Ramella, G., Vitulano, D. (2019). An Adaptive Copy-Move Forgery Detection Using Wavelet Coefficients Multiscale Decay. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-29888-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29887-6
Online ISBN: 978-3-030-29888-3
eBook Packages: Computer ScienceComputer Science (R0)