Abstract
Probabilistic epistemic argumentation allows for reasoning about argumentation problems in a way that is well founded by probability theory. Epistemic states are represented by probability functions over possible worlds and can be adjusted to new beliefs using update operators. While the use of probability functions puts this approach on a solid foundational basis, it also causes computational challenges as the amount of data to process depends exponentially on the number of arguments. This leads to bottlenecks in applications such as modelling opponent’s beliefs for persuasion dialogues. We show how update operators over probability functions can be related to update operators over much more compact representations that allow polynomial-time updates. We discuss the cognitive and probabilistic-logical plausibility of this approach and demonstrate its applicability in computational persuasion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that \(P(A)\) denotes the probability of argument A (the sum of probabilities of all possible worlds that accept A), while \(P(\{A\})\) denotes the probability of the possible world \(\{A\}\).
- 2.
We note that the study data contained examples of dialogues that resulted in a bigger belief change, however, we have chosen this one due to its interesting structure.
- 3.
References
Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)
Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 25–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_3
Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argument Comput. 6(1), 24–49 (2015)
Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: towards a better understanding. Int. J. Approximate Reasoning 54(7), 876–899 (2013)
Cohen, A., Gottifredi, S., García, A.J., Simari, G.R.: A survey of different approaches to support in argumentation systems. Knowl. Eng. Rev. 29(5), 513–550 (2014)
Doder, D., Woltran, S.: Probabilistic argumentation frameworks – a logical approach. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 134–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_12
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)
Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. In: Proceedings of COMMA 2010. FAIA, vol. 216, pp. 171–182. IOS Press (2010)
Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation semantics of relational conditionals. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS (LNAI), vol. 7526, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33347-7_5
Fischer, V.G., Schramm, M.: tabl-a tool for efficient compilation of probabilistic constraints. Technical report TUM-19636, Technische Universitaet Muenchen (1996)
Hadoux, E., Hunter, A., Polberg, S.: Strategic argumentation dialogues for persuasion: framework and experiments based on modelling the beliefs and concerns of the persuadee. Technical report. University College London (2019)
Hansson, S.: Logic of belief revision. In: The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edn. (2017)
Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approximate Reasoning 54(1), 47–81 (2013)
Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J. Approximate Reasoning 55(2), 607–638 (2014)
Hunter, A.: Modelling the persuadee in asymmetric argumentation dialogues for persuasion. In: Proceedings of IJCAI 2015, pp. 3055–3061. AAAI Press (2015)
Hunter, A.: Computational persuasion with applications in behaviour change. In: Proceedings of COMMA 2016. FAIA, vol. 287, pp. 5–18. IOS Press (2016)
Hunter, A., Polberg, S., Potyka, N.: Updating belief in arguments in epistemic graphs. In: Proceedings of KR 2018, pp. 138–147. AAAI Press (2018)
Hunter, A., Polberg, S., Thimm, M.: Epistemic graphs for representing and reasoning with positive and negative influences of arguments. arXiv preprint arXiv:1802.07489v1 (2018)
Hunter, A., Potyka, N.: Updating probabilistic epistemic states in persuasion dialogues. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 46–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_5
Hunter, A., Thimm, M.: On partial information and contradictions in probabilistic abstract argumentation. In: Proceedings of KR 2016, pp. 53–62. AAAI Press (2016)
Kern-Isberner, G. (ed.): Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1
Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reasoning. In: Proceedings of KR 2008, pp. 166–176. AAAI Press, Menlo Park (2008)
Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004)
Kido, H., Okamoto, K.: A Bayesian approach to argument-based reasoning for attack estimation. In: Proceedings of IJCAI 2017, pp. 249–255. AAAI Press (2017)
Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_1
Mossakowski, T., Neuhaus, F.: Modular semantics and characteristics for bipolar weighted argumentation graphs. arXiv preprint arXiv:1807.06685 (2018)
Polberg, S., Doder, D.: Probabilistic abstract dialectical frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 591–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_42
Polberg, S., Hunter, A.: Empirical evaluation of abstract argumentation: supporting the need for bipolar and probabilistic approaches. Int. J. Approximate Reasoning 93, 487–543 (2018)
Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In: Proceedings of COMMA 2014. FAIA, vol. 266, pp. 369–376. IOS Press (2014)
Potyka, N.: Solving reasoning problems for probabilistic conditional logics with consistent and inconsistent information. Ph.D. thesis (2016)
Potyka, N.: Continuous dynamical systems for weighted bipolar argumentation. In: Proceedings of KR 2018, pp. 148–157. AAAI Press (2018)
Potyka, N.: A polynomial-time fragment of epistemic probabilistic argumentation (technical report). arXiv preprint arXiv:1807.06685 (2018)
Potyka, N.: A polynomial-time fragment of epistemic probabilistic argumentation (extended abstract). In: Proceedings of AAMAS 2019. IFAAMAS (2019, to appear)
Potyka, N., Beierle, C., Kern-Isberner, G.: A concept for the evolution of relational probabilistic belief states and the computation of their changes under optimum entropy semantics. J. Appl. Logic 13(4), 414–440 (2015)
Potyka, N., Polberg, S., Hunter, A.: Polynomial-time updates of epistemic states in a fragment of probabilistic epistemic argumentation (technical report). arXiv preprint arXiv:1906.05066 (2019)
Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Proceedings of KR 2016, pp. 63–73. AAAI Press (2016)
Rienstra, T.: Towards a probabilistic Dung-style argumentation system. In: Proceedings of AT 2012, pp. 138–152 (2012)
Rienstra, T., Thimm, M., Liao, B., van der Torre, L.: Probabilistic abstract argumentation based on SCC decomposability. In: Proceedings of KR 2018, pp. 168–177. AAAI Press (2018)
Riveret, R., Baroni, P., Gao, Y., Governatori, G., Rotolo, A., Sartor, G.: A labelling framework for probabilistic argumentation. Ann. Math. Artif. Intell. 83(1), 21–71 (2018)
Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings of ECAI 2012. FAIA, vol. 242, pp. 750–755. IOS Press (2012)
Thimm, M., Baroni, P., Giacomin, M., Vicig, P.: Probabilities on extensions in abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017. LNCS (LNAI), vol. 10757, pp. 102–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75553-3_7
Thimm, M., Cerutti, F., Rienstra, T.: Probabilistic graded semantics. In: Proceedings of COMMA 2018. FAIA, vol. 305, pp. 369–380. IOS Press (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Potyka, N., Polberg, S., Hunter, A. (2019). Polynomial-Time Updates of Epistemic States in a Fragment of Probabilistic Epistemic Argumentation. In: Kern-Isberner, G., Ognjanović, Z. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2019. Lecture Notes in Computer Science(), vol 11726. Springer, Cham. https://doi.org/10.1007/978-3-030-29765-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-29765-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29764-0
Online ISBN: 978-3-030-29765-7
eBook Packages: Computer ScienceComputer Science (R0)