Nothing Special   »   [go: up one dir, main page]

Skip to main content

Polynomial-Time Updates of Epistemic States in a Fragment of Probabilistic Epistemic Argumentation

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11726))

Abstract

Probabilistic epistemic argumentation allows for reasoning about argumentation problems in a way that is well founded by probability theory. Epistemic states are represented by probability functions over possible worlds and can be adjusted to new beliefs using update operators. While the use of probability functions puts this approach on a solid foundational basis, it also causes computational challenges as the amount of data to process depends exponentially on the number of arguments. This leads to bottlenecks in applications such as modelling opponent’s beliefs for persuasion dialogues. We show how update operators over probability functions can be related to update operators over much more compact representations that allow polynomial-time updates. We discuss the cognitive and probabilistic-logical plausibility of this approach and demonstrate its applicability in computational persuasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(P(A)\) denotes the probability of argument A (the sum of probabilities of all possible worlds that accept A), while \(P(\{A\})\) denotes the probability of the possible world \(\{A\}\).

  2. 2.

    We note that the study data contained examples of dialogues that resulted in a bigger belief change, however, we have chosen this one due to its interesting structure.

  3. 3.

    https://sourceforge.net/projects/probabble/.

References

  1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)

    Article  MathSciNet  Google Scholar 

  2. Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 25–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_3

    Chapter  Google Scholar 

  3. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argument Comput. 6(1), 24–49 (2015)

    Article  Google Scholar 

  4. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: towards a better understanding. Int. J. Approximate Reasoning 54(7), 876–899 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cohen, A., Gottifredi, S., García, A.J., Simari, G.R.: A survey of different approaches to support in argumentation systems. Knowl. Eng. Rev. 29(5), 513–550 (2014)

    Article  Google Scholar 

  6. Doder, D., Woltran, S.: Probabilistic argumentation frameworks – a logical approach. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 134–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_12

    Chapter  Google Scholar 

  7. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  8. Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. In: Proceedings of COMMA 2010. FAIA, vol. 216, pp. 171–182. IOS Press (2010)

    Google Scholar 

  9. Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation semantics of relational conditionals. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS (LNAI), vol. 7526, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33347-7_5

    Chapter  Google Scholar 

  10. Fischer, V.G., Schramm, M.: tabl-a tool for efficient compilation of probabilistic constraints. Technical report TUM-19636, Technische Universitaet Muenchen (1996)

    Google Scholar 

  11. Hadoux, E., Hunter, A., Polberg, S.: Strategic argumentation dialogues for persuasion: framework and experiments based on modelling the beliefs and concerns of the persuadee. Technical report. University College London (2019)

    Google Scholar 

  12. Hansson, S.: Logic of belief revision. In: The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edn. (2017)

    Google Scholar 

  13. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int. J. Approximate Reasoning 54(1), 47–81 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hunter, A.: Probabilistic qualification of attack in abstract argumentation. Int. J. Approximate Reasoning 55(2), 607–638 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hunter, A.: Modelling the persuadee in asymmetric argumentation dialogues for persuasion. In: Proceedings of IJCAI 2015, pp. 3055–3061. AAAI Press (2015)

    Google Scholar 

  16. Hunter, A.: Computational persuasion with applications in behaviour change. In: Proceedings of COMMA 2016. FAIA, vol. 287, pp. 5–18. IOS Press (2016)

    Google Scholar 

  17. Hunter, A., Polberg, S., Potyka, N.: Updating belief in arguments in epistemic graphs. In: Proceedings of KR 2018, pp. 138–147. AAAI Press (2018)

    Google Scholar 

  18. Hunter, A., Polberg, S., Thimm, M.: Epistemic graphs for representing and reasoning with positive and negative influences of arguments. arXiv preprint arXiv:1802.07489v1 (2018)

  19. Hunter, A., Potyka, N.: Updating probabilistic epistemic states in persuasion dialogues. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 46–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_5

    Chapter  Google Scholar 

  20. Hunter, A., Thimm, M.: On partial information and contradictions in probabilistic abstract argumentation. In: Proceedings of KR 2016, pp. 53–62. AAAI Press (2016)

    Google Scholar 

  21. Kern-Isberner, G. (ed.): Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

    Book  MATH  Google Scholar 

  22. Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reasoning. In: Proceedings of KR 2008, pp. 166–176. AAAI Press, Menlo Park (2008)

    Google Scholar 

  23. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004)

    Article  MathSciNet  Google Scholar 

  24. Kido, H., Okamoto, K.: A Bayesian approach to argument-based reasoning for attack estimation. In: Proceedings of IJCAI 2017, pp. 249–255. AAAI Press (2017)

    Google Scholar 

  25. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5_1

    Chapter  Google Scholar 

  26. Mossakowski, T., Neuhaus, F.: Modular semantics and characteristics for bipolar weighted argumentation graphs. arXiv preprint arXiv:1807.06685 (2018)

  27. Polberg, S., Doder, D.: Probabilistic abstract dialectical frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 591–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_42

    Chapter  Google Scholar 

  28. Polberg, S., Hunter, A.: Empirical evaluation of abstract argumentation: supporting the need for bipolar and probabilistic approaches. Int. J. Approximate Reasoning 93, 487–543 (2018)

    Article  MathSciNet  Google Scholar 

  29. Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In: Proceedings of COMMA 2014. FAIA, vol. 266, pp. 369–376. IOS Press (2014)

    Google Scholar 

  30. Potyka, N.: Solving reasoning problems for probabilistic conditional logics with consistent and inconsistent information. Ph.D. thesis (2016)

    Google Scholar 

  31. Potyka, N.: Continuous dynamical systems for weighted bipolar argumentation. In: Proceedings of KR 2018, pp. 148–157. AAAI Press (2018)

    Google Scholar 

  32. Potyka, N.: A polynomial-time fragment of epistemic probabilistic argumentation (technical report). arXiv preprint arXiv:1807.06685 (2018)

  33. Potyka, N.: A polynomial-time fragment of epistemic probabilistic argumentation (extended abstract). In: Proceedings of AAMAS 2019. IFAAMAS (2019, to appear)

    Google Scholar 

  34. Potyka, N., Beierle, C., Kern-Isberner, G.: A concept for the evolution of relational probabilistic belief states and the computation of their changes under optimum entropy semantics. J. Appl. Logic 13(4), 414–440 (2015)

    Article  MathSciNet  Google Scholar 

  35. Potyka, N., Polberg, S., Hunter, A.: Polynomial-time updates of epistemic states in a fragment of probabilistic epistemic argumentation (technical report). arXiv preprint arXiv:1906.05066 (2019)

  36. Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Proceedings of KR 2016, pp. 63–73. AAAI Press (2016)

    Google Scholar 

  37. Rienstra, T.: Towards a probabilistic Dung-style argumentation system. In: Proceedings of AT 2012, pp. 138–152 (2012)

    Google Scholar 

  38. Rienstra, T., Thimm, M., Liao, B., van der Torre, L.: Probabilistic abstract argumentation based on SCC decomposability. In: Proceedings of KR 2018, pp. 168–177. AAAI Press (2018)

    Google Scholar 

  39. Riveret, R., Baroni, P., Gao, Y., Governatori, G., Rotolo, A., Sartor, G.: A labelling framework for probabilistic argumentation. Ann. Math. Artif. Intell. 83(1), 21–71 (2018)

    Article  MathSciNet  Google Scholar 

  40. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings of ECAI 2012. FAIA, vol. 242, pp. 750–755. IOS Press (2012)

    Google Scholar 

  41. Thimm, M., Baroni, P., Giacomin, M., Vicig, P.: Probabilities on extensions in abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017. LNCS (LNAI), vol. 10757, pp. 102–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75553-3_7

    Chapter  Google Scholar 

  42. Thimm, M., Cerutti, F., Rienstra, T.: Probabilistic graded semantics. In: Proceedings of COMMA 2018. FAIA, vol. 305, pp. 369–380. IOS Press (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Potyka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potyka, N., Polberg, S., Hunter, A. (2019). Polynomial-Time Updates of Epistemic States in a Fragment of Probabilistic Epistemic Argumentation. In: Kern-Isberner, G., Ognjanović, Z. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2019. Lecture Notes in Computer Science(), vol 11726. Springer, Cham. https://doi.org/10.1007/978-3-030-29765-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29765-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29764-0

  • Online ISBN: 978-3-030-29765-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics