Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive-Skip-TransE Model: Breaking Relation Ambiguities for Knowledge Graph Embedding

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

  • 2811 Accesses

Abstract

Knowledge graph embedding aims to encode entities and relations into a low-dimensional vector space, obtaining its distributed vector representation for further knowledge learning and reasoning. Most existing methods assume that each relation owns one unique vector. However, in the real world, many relations are multi-semantic. We note that a reasonable adaptive learning method for the number of semantics for a given relation is lacking in knowledge graph embedding. In this paper, we propose a probabilistic model Skip-TransE, which comprehensively considers the two-way prediction ability and global loss intensity of the golden triplets. Then based on Skip-TransE, its non-parametric Bayesian extended model Adaptive-Skip-TransE is presented to automatically learn the number of semantics for each relation. Extensive experiments show that the proposed models can achieve some substantial improvements above the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartunov, S., Kondrashkin, D., Osokin, A., Vetrov, D.: Breaking sticks and ambiguities with adaptive skip-gram. In: Artificial Intelligence and Statistics, pp. 130–138 (2016)

    Google Scholar 

  2. Blei, D.M., Jordan, M.I., et al.: Variational inference for dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  5. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Conference on Artificial Intelligence, No. EPFL-CONF-192344 (2011)

    Google Scholar 

  6. Fabian, M., Gjergji, K., Gerhard, W., et al.: Yago: a core of semantic knowledge unifying wordnet and wikipedia. In: 16th International World Wide Web Conference, WWW, pp. 697–706 (2007)

    Google Scholar 

  7. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  Google Scholar 

  8. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.W.: Stochastic variational inference. J. Mach. Learn. Res. 14(1), 1303–1347 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL, vol. 1, pp. 687–696 (2015)

    Google Scholar 

  10. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  11. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

    Article  Google Scholar 

  12. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  15. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  16. Sethuraman, J.: A constructive definition of dirichlet priors. Statistica Sinica 4, 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  18. Chandrahas, S.R., Talukdar, P.P.: Revisiting simple neural networks for learning representations of knowledge graphs (2017)

    Google Scholar 

  19. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119. Citeseer (2014)

    Google Scholar 

  20. Xiao, H., Huang, M., Zhu, X.: Transg : A generative model for knowledge graph embedding. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Long Papers, vol. 1, pp. 2316–2325. Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/P16-1219, http://aclweb.org/anthology/P16-1219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, S., Guo, X., Wang, L., Liu, Z., Mu, N. (2019). Adaptive-Skip-TransE Model: Breaking Relation Ambiguities for Knowledge Graph Embedding. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics